Digital Logic

Gateway to computer science

transistors, gates, circuits, Boolean algebra
https://cs.wellesley.edu/~cs240/

Digital data/computation $=$ Boolean

Boolean value (bit): $\mathbf{0}$ or $\mathbf{1}$
Abstraction!
Boolean functions (AND, OR, NOT, ...)
Electronically:
bit = high voltage vs. low voltage

Boolean functions = logic gates, built from transistors

Transistors (more in lab)

Truth table						
$\mathbf{V}_{\text {in }}$	$\mathbf{V}_{\text {out }}$	in	out		in	out
low	high	0	1	$=$	F	T
high	low	1	0		T	F

NOT gate

Abstraction!

Tiny electronic devices that compute basic Boolean functions.

Five basic gates: define with truth tables

NOT		NAND	0		
0	1				
1	0			$\quad 0$	1
:---	$\quad 1$	1			
:---					

OR	0	1
0		
1		

Integrated Circuits (1950s -)
Early (first?) transistor

Small integrated circuit

Digital Logic 6

A \qquad A
wire: identity

OR = Boolean sum
inputs = variables wires $=$ expressions gates $=$ operators/functions circuits $=$ functions

NOT: inverse or complement

Orange forms are most convenient in text editors.

A boolean literal is a variable or its complement.
E.g., $A, A^{\prime}, B, B^{\prime}$ are literal boolean expressions, but $A+B, A B$, and ($\left.A B\right)^{\prime}$ are not.

General Boolean Expressions

Boolean expressions are generated by this context free grammar:

$$
\mathrm{BE}::=\text { variable | } \mathrm{BE}^{\prime}|\mathrm{BE}+\mathrm{BE}| \mathrm{BE} * \mathrm{BE} \mid(\mathrm{BE})
$$

Precedence: $(. .)>$. NOT > AND > OR
E.g., $A^{\prime} B+C D^{\prime}$ means $\left(\left(A^{\prime}\right)^{*} B\right)+\left(C^{*}\left(D^{\prime}\right)\right)$

Translation Exercise

Connect gates to implement these functions. Check with truth tables.
Use a direct translation -- it is straightforward and bidirectional.
$F=(A \bar{B}+C) D$
$Z=\underline{W}+(X+\underline{W Y})$

Circuits \& Boolean Expressions

Given input variables, circuits specify outputs as functions of inputs using wires \& gates.

- Crossed wires touch only if there is a dot
- T intersections don't need a dot.

Each output can be translated to a boolean expression in terms of the input variables.

What is a boolean expression for Q in the above circuit?

What is the truth table for Q in the example circuit?

Sum-of-products Form

A sum-of-product form is a boolean expression for a circuit output that is expressed as a sum of minterms, one for each row whose output is 1.

A minterm for a row is a product of literals (variables or their negations) whose value is 0 for that row.

What is the product-of-sum expression for this truth table?

A	B	C	\mathbf{Q}
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Product-of-sums Form

A product-of-sums form is a boolean expression for a circuit output that is expressed as a product of maxterms, one for each row whose output is 0 .
A maxterm for a row is a sum of literals (variable or their negations) whose value is 1 for that row.

What is the sum-of-product expression for this truth table?

A	\mathbf{B}	\mathbf{C}	\mathbf{Q}
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Boolean Algebra: Distributivity

Distributive	$A+B C=(A+B)(A+C)$	$A(B+C)=A B+A C$

Boolean Algebra: Simple laws

Boolean algebra laws can be proven by truth tables and used to show equivalences between boolean expressions.
For all laws in one place, see the Boolean Laws Reference Sheet

Name of Law / Theorem	Form	Equivalent/Dual form (interchange AND and OR, and 0 and 1)
Involution (or double negation)	$\overline{\bar{A}}=A$	none
Identity	$0+A=A$	$1 * A=A$
Inverse (or Complements)	$A \bar{A}=0$	$A+\bar{A}=1$
Commutativity	$A+B=B+A$	$A B=B A$
Associativity	$(A B) C=A(B C)$	$(A+B)+C=A+(B+C)$
Idempotent	$A+A=A$	$A A=A$
Null (or Null Element)	$0 * A=0$ (the Zero Law)	$1+A=1$ (the One Law)

Boolean Algebra: Absorption

Absorption 1 (Covering)	$A+A B=A$	$A(A+B)=A$
Absorption 2	$A+\bar{A} B=A+B$	$A(\bar{A}+B)=A B$

Boolean Algebra: DeMorgan's laws

DeMorgan's	$\bar{A}+\bar{B}+\bar{C}+\ldots=\overline{A B C \ldots}$	$\overline{A+B+C+\ldots}=\bar{A} \bar{B} \bar{C} \ldots$

XOR: Exclusive OR
Output = 1 if exactly one input = 1.

Build from earlier gates:

Often used as a one-bit comparator.

Boolean Algebra: Some Other Laws

Combining	$A B+A \bar{B}=A$	$(A+B)(A+\bar{B})=A$
Consensus	$A B+\bar{A} C+B C=A B+\bar{A} C$	$(A+B)(\bar{A}+C)(B+C)=(A+B)(\bar{A}+C)$

NAND is universal.

All Boolean functions can be implemented using only NANDs. Build NOT, AND, OR, NOR, using only NAND gates.

Larger gates Build a 4-input AND gate using any number of 2-input gates.	Circuit simplification Is there a simpler circuit that performs the same function? Start with an equivalent Boolean expression, then simplify with algebra. $F(A, B, C)=$
Circuit derivation: code detectors AND gate + NOT gates $=$ code detector, recognizes exactly one input code. Design a 4-input code detector to output 1 if $A B C D=1001$, and 0 otherwise. \qquad \qquad \qquad Design a 4-input code detector to accept two codes (ABCD=1001, ABCD=1111) and reject all others. (accept $=1$, reject $=0$)	Circuit derivation: sum-of-products form logical sum (OR) of products (AND) of inputs or their complements (NOT) Draw the truth table and design a sum-of-products circuit for a 4-input code detector to accept two codes $(A B C D=1001, A B C D=1111)$ and reject all others. How are the truth table and the sum-of-products circuit related?
Digital Logic 31	Digital Logic 32

Voting machines

Computers

- Manual calculations

A majority circuit outputs 1 if and only if a majority of its inputs equal 1. Design a majority circuit for three inputs. Use a sum of products.

A	B	C	Majority
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Triply redundant computers in spacecraft

- Space program also hastened Integrated Circuits

Early pioneers in reliable computing

Katherine Johnson

- Calculated first US human space flight trajectories
Mercury, Apollo 11, Space Shuttle, Reputation for accuracy in manual calculations, verified early code
Called to verify results of code for launch calculations for first US human in orbit Backup calculations helped save Apollo 13 Presidential Medal of Freedom 2015

Margaret Hamilton

- Led software team for Apollo 11 Guidance Computer, averted mission abort on first moon landing.
- Coined "software engineering", developed techniques for correctness and reliability.
Presidential Medal of Freedom 2016

Apollo 11 code print-out

Wellesley Connection: Mary Allen Wilkes '59

Created LAP operating system at
MIT Lincoln Labs for Wesley A. Clark's LINC computer, widely regarded as the first personal computer (designed for interactive use in bio labs). Work done 1961-1965.

Created first interactive keyboard-based text editor on 256 character display. LINC had only 2K 12-bit words; (parts of) editor code fit in 1 K section; document in other 1 K .

In 1965, she developed LAP6 with LINC in Baltimore living room. First home PC user!

Early versions of LAP developed using LINC simulator on MIT TX2 compute, famous for GUI/PL work done by van and Bert Sutherland at MIT.

Later earned Harvard law degree and headed Economic Crime and Consumer Protection Division in Middlesex (MA) County District Attorney's office.

