CS 240 Foundations of Computer Systems	But first Recall: sum of products logical sum (OR)
	of products (AND)
	of inputs or their complements (NOT).
Combinational Logic	A B C M Construct with:
Karnaugh maps	0000010010010
Building blocks: encoders, decoders, multiplexers	0 1 1 1 I Is it minimal? 1 0 0 0
inter	
Abstraction!	1 1 0 1
	1 1 1 1
https://cs.wellesley.edu/~cs240/ Combinational Logic 1	Combinational Logic 2

Gray Codes = reflected binary codes

Alternate binary encoding designed for electromechanical switches and counting.

		0C 0) 01 1	11 2	10 3		
000	001	011	010	110	<mark>1</mark> 11	101	100
0	1	2	3	4	5	6	7

How many bits change when incrementing?

Combinational Logic 3

k	(aı	rna	au	gh N	Aaps:	find (m	ninima	l) sum	s of pr	oduct	s e	2
						gray code			CD			
A 0	B 0	c 0	D 0	F(A, B, 0	C, D)	or	der 🦳	^{>} 00	01	11	10	
0	0	0	1	0			00	0	0	0	0	ĺ
0 0	0 0	1 1	0 1	0 0			01	0	0	0	1	
0 0	1 1	0 0	0 1	0 0		AB	11	1	1	0	1	
0 0	1 1	1 1	0 1	1 0			10	1	1	1	1	
1	0	0	0	1	1. Cover e	xactly the	_	- drawing	- (min	- imum) i	- aumhai	-
1	0 0	0 1	1 0	1 1		ally sized	-	-				
1	0	1	1	1		vers of 2.	0				•	
1	1	0	0	1	2. For eac	h rectang	le, mak	e a prod	duct of	the inpu	uts (or	
1	1	0	1	1	comple	ments) th	nat are 2	1 for all	cells in	the rec	tangle.	
1	1	1	0	1	(minter	'						
1	1	1	1	0	3. Take th	e <i>sum</i> of	these p	roducts		Combinat	ional Logic	

Karnaugh Maps and Wrapping

Blocks of 1s in Karnaugh maps can wrap around sides and even 4 corners.

Give the minimal sum-of-products for the Karnaugh map to the left.

The grouping and ordering of variables in a Karnaugh map doesn't matter, but the **AB/CD** ordering is easier to read from a truth table.

Convince yourself that the **AC/DB** table is equivalent to the **AB/CD** table and has the Same sum-of-products expression. In this particular AC/DB table, no wrapping is required for the rectangles!

	00	1	0	0	1	
AB	01	0	0	0	0	
AD	11	1	0	0	1	
	10	1	0	0	1	
			D	В		
		00	D 01		10	
	00	00 1			10	
AC	00 01				10	

10 1

00 01 11 10

Voting again with Karnaugh Maps

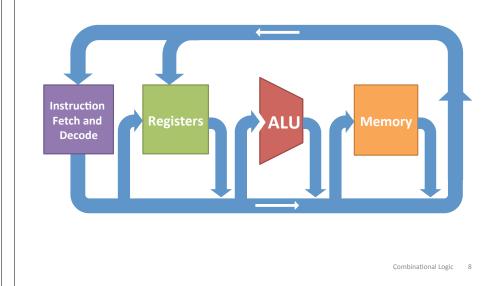
Combinational Logic 5

Combinational Logic 7

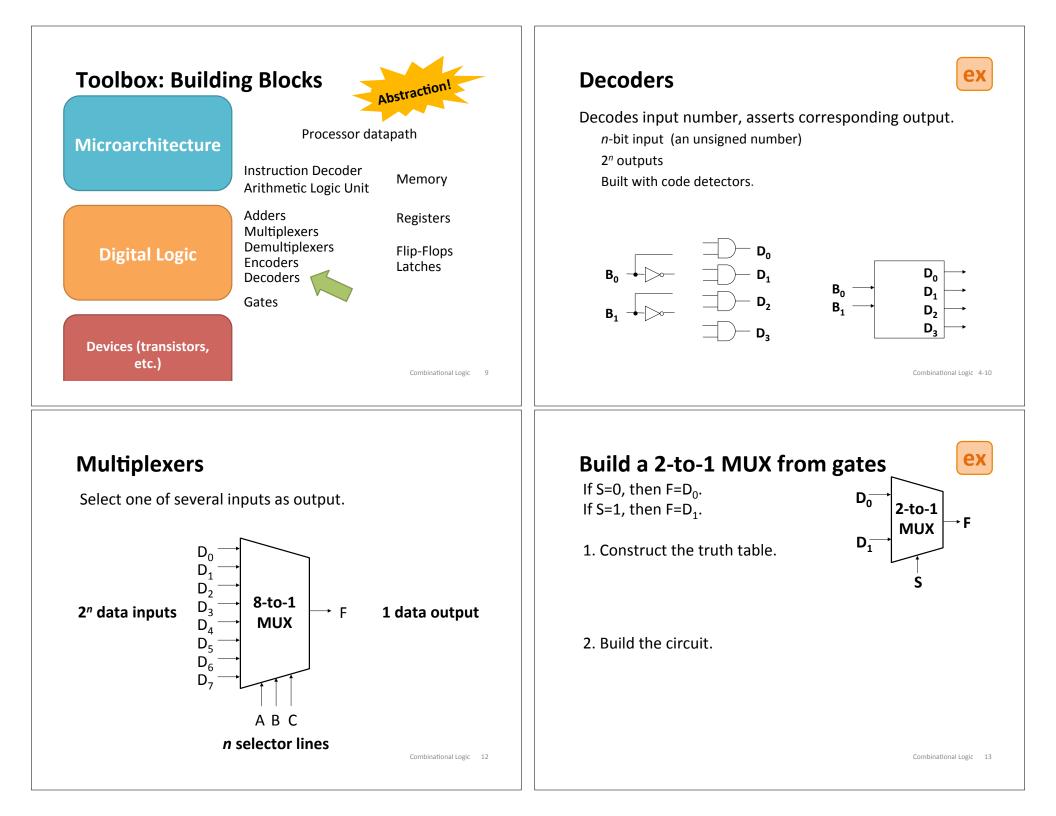
ex

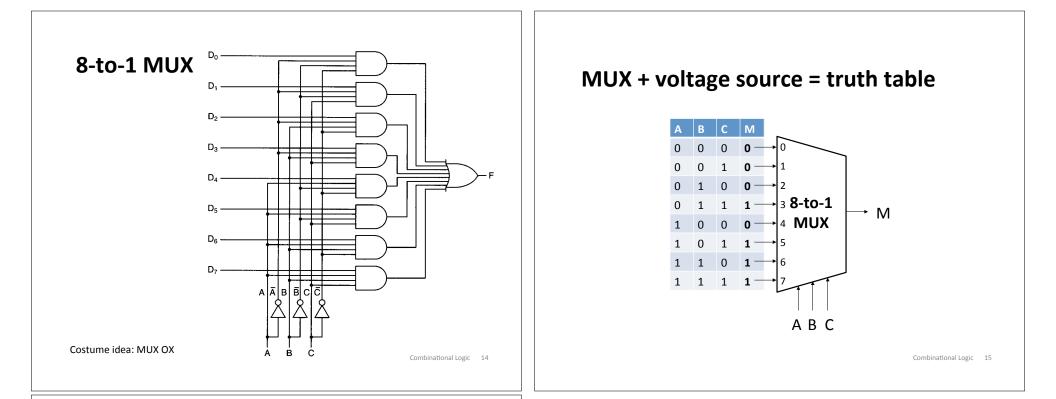
Karnaugh Maps and Ambiguity

The minimal sum-of-products expression for a Karnaugh map may not be unique.


Ambiguity is introduced when an arbitrary choice needs to be made.

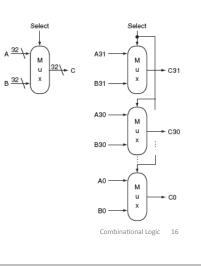
An example of ambiguity is this Karnaugh map. Give four different minimal sum-ofproduct expressions for this map


		CD					
		00	01	11	10		
	00	1	1	1	1		
AB	01	1	1	0	1		
	11	1	1	1	1		
	10	0	0	0	0		


Combinational Logic 6

Goal for next 2 weeks: Simple Processor

ех


Buses and Logic Arrays

A bus is a collection of data lines treated as a single logical signal.

= fixed-width value

Array of logic elements applies same operation to each bit in a bus.

= bitwise operator

