CS240 Lab 3: Combinational and Arithmetic Logic

Pre-lab Assignment

Question 1

Assume you have 3 inputs, $\mathbf{S}, \mathbf{A 1}$ and $\mathbf{A 0}$, and an output \mathbf{Q}.
When $\mathbf{S}=0, \mathbf{Q}=\mathbf{A} \mathbf{0}$
When $\mathbf{S}=1, \mathbf{Q}=\mathbf{A} 1$
Give the truth table for \mathbf{Q} :

\mathbf{S}	$\mathbf{A 1}$	$\mathbf{A 0}$	\mathbf{Q}
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Write the unsimplified sum-of-products boolean algebra expression for \mathbf{Q} :

$$
\mathbf{Q}=
$$

\qquad
Write a simplified version of the expression above using only 4 operations (one of which is NOT):
Q =

Draw a circuit that produces \mathbf{Q} :

S stands for "select." Knowing this, describe in English what this circuit does:
\square

Question 2

Assume you have 2 inputs, A1 and A0, and 4 outputs/functions, Q0, Q1, Q2, and Q3

- Q0 is only true when A1A0 = 00
- Q1 is only true when A1A0 $=01$
- Q2 is only true when A1A0 = 10
- Q3 is only true when A1A0 = 11

Give the truth table:

A1	A0	Q3	Q2	Q1	Q0
0	0				
0	1				
1	0				
1	1				
0	0				
0	1				
1	0				
1	1				

Write a boolean algebra expression for each of Q0, Q1, Q2, and Q3:
\square

Draw a circuit that produces each of the functions from a single set of inputs A1 and A0:

Each input combination of $\mathbf{A 1}$ and $\mathbf{A 0}$ represents a 2-bit binary number. How is this related to the outputs?
\square

Question 3

Complete the truth table for two functions, Sum and CarryOut, which represent the result when adding two individual bits \mathbf{A} and \mathbf{B} :

A	B	Sum	Carry Out
0	0		
0	1		
1	0		
1	1		

Draw a circuit which produces Sum and CarryOut from inputs \mathbf{A} and \mathbf{B} (this circuit is known as a half adder). You should use exactly one AND gate and one XOR (exclusive or) gate.
\square

Give the truth table for a full adder (which incorporates a carry-in bit to the sum of \mathbf{A} and B):

A	B	Carry In	Sum	Carry Out
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Question 4

A circuit for the full adder is:

Circle the two half adders on the diagram above.

Explain what each half adder is doing, in relation to adding the three bits A, B, and Carryln:

Explain what the OR gate is doing to produce the CarryOut:

\square

