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Addition: 1-bit half adder
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Hint: the smallest solution uses 2 gates from: AND, OR, XOR, NOT, NAND, NOR

Addition: 1-bit full adder
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Addition: n-bit ripple-carry adder
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There are faster, more complicated ways too...
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Hardware unit for arithmetic and bitwise operations.

1-bit ALU for bitwise operations

We will use n 1-bit ALUs to build an n-bit ALU.
Each bit i in the result is computed from the corresponding bit i in the two inputs.

Op A B | Result
An example (simplified) 1-bit ALU
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Used as selector, chooses
which function to perform

1-bit ALU: 3 operations
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(11 is not used in this example ALU!)




Carry in

n-bit ripple carry adder Ao [ ¥ Use the same selector Controlling the ALU Carryin
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Include subtraction
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2 Circuits Assignment! 1 . + 2
3 Carry out 14

Invert A Negate B
A L Controlling the ALU ol
° . D N bstrac“"“'
ALU control lines MUx}-> Result, A
1
00 AND B N
_I; L— Control Lines

2% ol ALU control lines m

00 add Aw[;ﬁ —~L IS [

01 subtract MuxrT> Result; oy AND Operand A m)

0001 OR
7 NAND B, Resul
+ 2 =) Result

P o T |2 0010 add Operand

» less than : 0110 subtract =) l

?7? equals A

o >~ S Condition Codes
MUX Result, ;

You will implement these in the 1
Circuits Assignment! B + 2

Carry out




How many different functions (operations) could this ALU theoretically perform?

ALU control lines  Function

0000 AND
0001 OR
0010 add
0110 subtract

Control Lines
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Operand A =)
e Result
Operand B wp

Condition Codes
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None of the above

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app
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ALU conditions

Extra ALU outputs
describing properties of result.

Zero Flag:
1if resultis 00...0 else 0

Sign Flag:
1if result is negative else 0

Carry Flag:
1if carry out else 0

(Signed) Overflow Flag:
1 if signed overflow else 0

You will implement these in the Circuits Assignment!
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