CS 240

Foundations of Computer Systems

Arithmetic Logic

Arithmetic Logic Unit

https://cs.well

adders

ley.edu/~cs240/

WELLESLEY

Addition: 1-bit half adder

—Sum
B—

Carry out

A
- Sum
B

Carty out
AlB C;L?’ sum
olol o | o
ol1] o | 1
1ol o | 1
111 1 [ o

Hint: the smallest solution uses 2 gates from: AND, OR, XOR, NOT, NAND, NOR

Addition: 1-bit full adder

Carry in

—Sum

Carry out

A

B

Carry in
3

Carty out
o a] o] G Tom
0 0|0 0 0
0 0|1 0 1
0 110 0 1
0 111 1 0
1 0|0 0 1
1 0|1 1 0
1 10 1 0
1 1|1 1 1

Addition: n-bit ripple-carry adder

Carry in

I
Carry out

There are faster, more complicated ways too...

Carry ing
3
Ao
= Sumg
Bo
A
= Sum;
By
A
= Sum,
B,
An»l S
= Sum,_
Bn.1 n-1
[

Carry out,, ;




Processor Components

Instruction
Fetch and
Decode

Registers

ppstractiont

Arithmetic Logic Unit (ALU)

a few bits —s Operation

|

word

Operand A =)
words =) Result

Operand B )

l

Condition Codes . —— 0 /ew bits
(sign, overflow, carry-out, zero)

Hardware unit for arithmetic and bitwise operations.

1-bit ALU for bitwise operations

We will use n 1-bit ALUs to build an n-bit ALU.
Each bit i in the result is computed from the corresponding bit i in the two inputs.

Op A B | Result
An example (simplified) 1-bit ALU
Operation 0 0 0
0 0 1
= D0
0
E Result | 9 1 1
x 1 0 0
B ! 1 | o] 1
1 1 0
1 1 1

Used as selector, chooses
which function to perform

1-bit ALU: 3 operations

Operation

L

Carry in

=10

0 (00)

MUX | 5 Result
1 (01)

=10
+

Sum

2 (10)

)

Carry out

L —

(11 is not used in this example ALU!)




Carry in

n-bit ripple carry adder Ao [ ¥ Use the same selector Controlling the ALU Carryin
) MUX[--> Resulty for every 1-bit ALU
Carry in 1
1 sum > Resulty
A B + |—> 2
o H. Sumg ’ —
By n A ‘o\
A X > Result, ALU control lines m H> Result
= Sum, Sum
B By 2 AND
[]
A OR .
5 = Sum; n-bit ALU add :
2
[l
l‘ An1 0 Result,.,
Anq MUX Result, ;
= Sum",l 1
Bt ¥ Sum
3 Bn1 2 Carry out
Carry out Carry out
Negate B
Include subtraction Carry in Include subtraction N Neas
0
-> Result, Mux > Resulty
estito Plan to compute A-B: .
I ) B
How can we control ALU inputs 1. Feed bitwise-not B into the adder  Bo FE +]—>2/
or add minimal new logic 2. Add an extra 1
to also compute A-B? > Result, A o
Key insight: Mux> Result,
reeal anbeuseatorbomt " TR
A -B=A+ (-B) : ! > | —
= A + ~B + 1 H
( ) 1. Feed the selector into a new 2:1 :
Plan: Result mux to choose B or ~B
: esult, ; . 0
Feed bitwise-not B into the adder 2. fe(:d::elseletcth |‘r;.as ttf\;:arry MUX|—> Result, ;
in to the least significant bi
Add an extra 1: how? g !
Carry out 2




Include subtraction

ALU control lines m

AND
OR
add
subtract

= I O =

Negate B

<
0

mux > Resulty
1
2

/

Mux > Result;

Invert A Negate B
A 0
=
A NAND B Mux > Resulty
B, 0
0 —I; +]—>2/
ANORB
Ay 0
I;lj‘ D 0
A<B Mux > Result;
1
Bl ht 2
A==B q; L—

How can we control ALU inputs or add

0
0 minimal new logic to compute each? >~ 0
MUX Result,; MUX Result, ;
1 1
You will implement these in the B Y
2 Circuits Assignment! 1 . + 2
3 Carry out 14

Invert A Negate B
A L Controlling the ALU ol
° . D N bstrac“"“'
ALU control lines MUx}-> Result, A
1
00 AND B N
_I; L— Control Lines

2% ol ALU control lines m

00 add Aw[;ﬁ —~L IS [

01 subtract MuxrT> Result; oy AND Operand A m)

0001 OR
7 NAND B, Resul
+ 2 =) Result

P o T |2 0010 add Operand

» less than : 0110 subtract =) l

?7? equals A

o >~ S Condition Codes
MUX Result, ;

You will implement these in the 1
Circuits Assignment! B + 2

Carry out




How many different functions (operations) could this ALU theoretically perform?

ALU control lines  Function

0000 AND
0001 OR
0010 add
0110 subtract

Control Lines

]

Operand A =)
e Result
Operand B wp

Condition Codes

16

32

None of the above

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

"

ALU conditions

Extra ALU outputs
describing properties of result.

Zero Flag:
1if resultis 00...0 else 0

Sign Flag:
1if result is negative else 0

Carry Flag:
1if carry out else 0

(Signed) Overflow Flag:
1 if signed overflow else 0

You will implement these in the Circuits Assignment!

Carry in

Carry out

-> Result,

> Result;

Result,.,




