
CS 251 Fall 2019
Principles of Programming Languages
Ben WoodλCS 240

Foundations of Computer Systems

https://cs.wellesley.edu/~cs240/

A Simple Processor

1

with Abstract Machine Execution Exercise Solutions
1. A simple Instruction Set Architecture
2. A simple microarchitecture (implementation):

Data Path and Control Logic

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

A Simple Processor

Devices (transistors, etc.)

Solid-State Physics

Ha
rd

w
ar

e

Digital Logic

Microarchitecture

Instruction Set Architecture

Operating System

Programming Language

Compiler/Interpreter

Program, Application

So
ft

w
ar

e

2

Computer

Instruction Set Architecture (HW/SW Interface)

memory

Instruction
Logic

Registers

processor

Encoded
Instructions

Data

Instructions
• Names, Encodings
• Effects
• Arguments, Results
• Abstraction over ALUs

Local storage
• Names, Size
• How many Large storage

• Addresses, Locations

3

Microarchitecture (Implementation of ISA)

ALURegisters Memory
Instruction
Fetch and
Decode

Computer

4

An example, made-up instruction set architecture for CS240

Word size = 16 bits (smaller than most real CPUs)

• Register size = 16 bits.
• ALU computes on 16-bit values.

Memory is byte-addressable, accesses full words (byte pairs)
16 registers: R0 - R15

• R0 always holds hardcoded 0
• R1 always holds hardcoded 1
• R2 – R15: general purpose

Instructions are 1 word in size.
Separate instruction memory.
Program Counter (PC) register

• holds address of next instruction to execute.

5

Address Contents
0 First instruction,

low-order byte
1 First instruction,

high-order byte
2 Second instruction,

low-order byte
... ...

HW ISA

R: Register File

6

HW ISA

Write?
0 = read
1 = write

Write data

r

w

Write port
Register address #3

Read ports

r

r Register address #1

Register address #2

Read data 1

Read data 2

w

w

r = ?
w = ?

Word size = 16 bits, # registers = 16

ex

7

8

9

R: Register File Reg Contents

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15
10

HW ISA

Write?
0 = read
1 = write

Write data

r

w

Write port
Register address #3

Read ports

r

r Register address #1

Register address #2

Read data 1

Read data 2

w

w

r = ?
w = ?

Word size = 16 bits, # registers = 16

ex

We’ll think of the
register file like this:

Abstraction!

R0 always holds
hardcoded 0
R1 always holds
hardcoded 1

How should we write
this?

11

HW ISA

We’ll think of the data memory like this:

Abstraction!M: Data Memory

Address Contents
0x0 – 0x1
0x2 – 0x3
0x4 – 0x5
0x6 – 0x7
0x8 – 0x9
0xA – 0xB
0xC – 0xD
…

A B

B

B

log2 A

Memory is byte-addressable, accesses full words (16 bits)

address size = ? ex

12

HW ISA

We’ll think of the instruction memory
like this:

Abstraction!

IM: Instruction Memory

Instructions are 1 word in size.
Separate instruction memory.
Program Counter (PC) register

• holds address of next instruction to execute.

Address Contents
0x0 – 0x1
0x2 – 0x3
0x4 – 0x5
0x6 – 0x7
0x8 – 0x9
…

Program Counter
PC

1. ins IM[PC]
2. PC PC + 2
3. Do ins

Processor
Loop

M: Data Memory R: Register File

IM: Instruction Memory
Address Contents
0x0 – 0x1
0x2 – 0x3
0x4 – 0x5
0x6 – 0x7
0x8 – 0x9
…

PC: Program Counter

Address Contents
0x0 – 0x1
0x2 – 0x3
0x4 – 0x5
0x6 – 0x7
0x8 – 0x9
0xA – 0xB
0xC – 0xD
…

1. ins IM[PC]
2. PC PC + 2
3. Do ins

Processor Loop

13

HW ISA Reg Contents

R0 0x0000

R1 0x0001

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

Abstraction!

Abstract Machine

Instructions

14

Assembly Syntax Meaning Opcode Rs Rt Rd

ADD Rs, Rt, Rd R[d] R[s] + R[t] 0010 s t d

SUB Rs, Rt, Rd R[d] R[s] - R[t] 0011 s t d

AND Rs, Rt, Rd R[d] R[s] & R[t] 0100 s t d

OR Rs, Rt, Rd R[d] R[s] | R[t] 0101 s t d

LW Rt, offset(Rs) R[t] M[R[s] + offset] 0000 s t offset

SW Rt, offset(Rs) M[R[s] + offset] R[t] 0001 s t offset

BEQ Rs, Rt, offset
If R[s] == R[t] then
 PC PC + 2 + offset*2

0111 s t offset

JMP offset PC offset*2 1000 offset

HALT Stops program execution 1111

16-bit Encoding

(R = register file,
 M = data memory)

LSBMSB
HW ISA

JMP offset is
unsigned

All others are
signed

M: Data Memory R: Register File

IM: Instruction Memory
Address Contents
0x0 – 0x1 ADD R1, R1, R2
0x2 – 0x3 SW R2, 4(R0)
0x4 – 0x5 HALT
0x6 – 0x7
0x8 – 0x9
…

PC: Program Counter

Address Contents
0x0 – 0x1 0xEB 0xCA
0x2 – 0x3 0xBD 0x56
0x4 – 0x5
0x6 – 0x7
0x8 – 0x9
0xA – 0xB
0xC – 0xD
…

1. ins IM[PC]
2. PC PC + 2
3. Do ins

Processor Loop

15

HW ISA Reg Contents

R0 0x0000

R1 0x0001

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

Exercise #0 (example)
Fill in the rest of the
machine state based on
this initial state

ex

16

PC Instr State Changes

0x0 ADD R1, R1, R2 R[2] R[1] & R[1] = 1 + 1 = 0x0002 ; PC PC+2 = 0+2 = 2

0x2 SW R2, 4(R0) M[R[0] + 4] = M[4] R[2] = 0x0002; PC PC+2 = 6+2 = 8

0x8 HALT Program execution stops

These bytes will be stored in so-called
Little Endian order when we store
them to memory M.

That is, the byte pair 0x02 will be
stored in the “little” end of the word
—the lower address of the pair of
addresses that store the word. 0x00
will be stored at the higher address.

Execution Table for Exercise #0 (shows step-by-step execution)
Solutions ex

M: Data Memory R: Register File

IM: Instruction Memory
Address Contents
0x0 – 0x1 ADD R1, R1, R2
0x2 – 0x3 SW R2, 4(R0)
0x4 – 0x5 HALT
0x6 – 0x7
0x8 – 0x9
…

PC: Program Counter

Address Contents
0x0 – 0x1 0xEB 0xCA
0x2 – 0x3 0xBD 0x56
0x4 – 0x5 0x02 0x00
0x6 – 0x7
0x8 – 0x9
0xA – 0xB
0xC – 0xD
…

1. ins IM[PC]
2. PC PC + 2
3. Do ins

Processor Loop

17

HW ISA Reg Contents

R0 0x0000

R1 0x0001

R2 0x0002

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

Exercise #0 (example)
Fill in the rest of the
machine state based on
this initial state

ex Solutions

M: Data Memory R: Register File

IM: Instruction Memory
Address Contents
0x0 – 0x1 LW R3, 0(R0)
0x2 – 0x3 LW R4, 2(R0)
0x4 – 0x5 AND R3, R4, R5
0x6 – 0x7 SW R5, 4(R0)
0x8 – 0x9 HALT
…

PC: Program Counter

Address Contents
0x0 – 0x1 0xEB 0xCA
0x2 – 0x3 0xBD 0x56
0x4 – 0x5 0xA9 0x42

0x6 – 0x7
0x8 – 0x9
0xA – 0xB
0xC – 0xD
…

1. ins IM[PC]
2. PC PC + 2
3. Do ins

Processor Loop

18

HW ISA Reg Contents

R0 0x0000

R1 0x0001

R2

R3 0xCAEB

R4 0x56BD

R5 0x42A9

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

Exercise #1:
Fill in the rest of the
machine state based on
this initial state

ex

19

PC Instr State Changes

0x0 LW R3 0(R0) R[3] M[R[0] + 0]] = M[0] = 0xCAEB; PC PC+2 = 0+2 = 2

0x2 LW R4, 2(R0) R[4] M[R[0] + 2]] = M[2] = 0x56BD; PC PC+2 = 2+2 = 4

0x4 AND R3, R4, R5 R[5] R[3] & R[4] = 0xA942 ; PC PC+2 = 4+2 = 6

0x6 SW R5, 4(R0) M[R[0] + 4] = M[4] R[5] = 0x42A9; PC PC+2 = 6+2 = 8

0x8 HALT Program execution stops

The bytes are swapped from the memory M picture on
the previous page because it’s assumed that
the bytes are stored in so-called Little Endian order.

E.g., for the byte pair 0xEB at address 0x0 and 0xCA
at address 0x1, the byte at the lower address 0x0 is
stored at the “little end” (LSB) of the 2-byte word. As
we’ll soon see, this is consistent with the byte
ordering in the C programming language.

Execution Table for Exercise #1 (shows step-by-step execution)
Solutions ex

M: Data Memory R: Register File

IM: Instruction Memory
Address Contents
0x0 – 0x1 SUB R8, R8, R8
0x2 – 0x3 BEQ R9, R0, 3
0x4 – 0x5 ADD R10, R8, R8
0x6 – 0x7 SUB R9, R1, R9
0x8 – 0x9 JMP 1
0xA – 0xB HALT
…

PC: Program Counter

Address Contents
0x0 – 0x1 0xEB 0xCA
0x2 – 0x3 0xBD 0x56
0x4 – 0x5
0x6 – 0x7
0x8 – 0x9
0xA – 0xB
0xC – 0xD
…

1. ins IM[PC]
2. PC PC + 2
3. Do ins

Processor Loop

20

HW ISA Reg Contents (time:)

R0 0x0000

R1 0x0001

R2

R3

R4

R5

R6

R7

R8 0x???? 0x0000 0x0003 0x0006

R9 0x0002 0x0001 0x0000

R10 0x0003

R11

R12

R13

R14

R15

Exercise #2:
Fill in the rest of the
machine state based on
this initial state

ex

→

→ →
→ →

→
1 2

3

4

5

21

PC Instr State Changes

0x0 SUB R8, R8, R8 R[8] R[8] – R[8] = 0; PC PC+2 = 0+2 = 2

0x2 BEQ R9, R0, 3 PC PC+2 = 2+2 = 4 (because 2 = R[9] ≠ R[0] = 0)

0x4 ADD R10, R8, R8 R[8] R[10] + R[8] = 3 + 0 = 3; PC PC+2 = 4+2 = 6

0x6 SUB R9, R1, R9 R[9] R[9] - R[1] = 2 – 1 = 1; PC PC+2 = 6+2 = 8

0x8 JMP 1 PC 2*1 = 2

0x2 BEQ R9, R0, 3 PC PC+2 = 2+2 = 4 (because 1 = R[9] ≠ R[0] = 0)

0x4 ADD R10, R8, R8 R[8] R[10] + R[8] = 3 + 3 = 6; PC PC+2 = 4+2 = 6

0x6 SUB R9, R1, R9 R[9] R[9] - R[1] = 1 – 1 = 0; PC PC+2 = 6+2 = 8

0x8 JMP 1 PC 2*1 = 2

0x2 BEQ R9, R0, 3 PC PC+2+(2*3) = 4+6 =10 (because 0 = R[9] = R[0] = 0)

0xA HALT Program execution stops

Execution Table for Exercise #2 (shows step-by-step execution)
Solutions

ex

ALU

microarchitecture

22

Registers Memory
Instruction
Fetch and
Decode

12 34

One possible hardware implementation of the HW ISA

HW ARCH

Instruction Fetch
(default, unless branch or jump)

Fetch instruction from memory.
Increment program counter (PC)
to point to the next instruction.

23

Read
Address Instruction

Instruction
Memory

Add

PC

2

1. ins IM[PC]
2. PC PC + 2
3. Do ins

Processor
Loop

Instruction Encoding: 3 formats

24

15:12 11:8 7:4 3:0
opcode Rs Rt Rd

Arithmetic instructions:
- 2 source register IDs (Rs,Rt)
- 1 destination register ID (Rd)

All have 4-bit opcode in MSBs

15:12 11:8 7:4 3:0
opcode Rs Rt offset

Memory/branch instructions:
- address/source register ID (Rs)
- data/source register ID (Rt)
- 4-bit offset

15:12 11:0
opcode offset

Jump instruction:
- 12-bit offset

Arithmetic Instructions

25

Instruction Meaning Opcode Rs Rt Rd

ADD Rs, Rt, Rd R[d] R[s] + R[t] 0010 0-15 0-15 0-15

SUB Rs, Rt, Rd R[d] R[s] – R[t] 0011 0-15 0-15 0-15

AND Rs, Rt, Rd R[d] R[s] & R[t] 0100 0-15 0-15 0-15

OR Rs, Rt, Rd Rd R[s] | R[t] 0101 0-15 0-15 0-15

...

16-bit Encoding

Opcode Rs Rt Rd
0010 0011 0110 1000ADD R3, R6, R8

Arithmetic Instructions:
Instruction Decode, Register Access, ALU

26

Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Read
 Data 1

Read
 Data 2

ALU
overflow

ALU Op

Reg Write

zero

Control
Unit

ALU result16

16

16

Register File
16

4

4

4

4Opcode

Rs

Rt

Rd

Write Enable

Memory Instructions

27

Instruction Meaning Op Rs Rt Rd

LW Rt, offset(Rs) R[t] Mem[R[s] + offset] 0000 0-15 0-15 offset

SW Rt, offset(Rs) Mem[R[s] + offset] R[t] 0001 0-15 0-15 offset

...

SW R6, -8(R3) Opcode Rs Rt Rd
0001 0011 0110 1000

28

Data Memory

Address

Write
Data

Read
Data

Mem Store

32

16
Inst

Write Data

Read Addr 1

Read Addr 2

Write Addr

Read
 Data 1

Read
 Data 2

ALU

ALU OpReg Write

Control
Unit

16

16

16

Register File
16

4

4

4

4

Sign
extend

164

How can we support arithmetic
and memory instructions?

What's shared?

Opcode

Rs

Rt

Rt

Rd
(offset)

Write Enable

Write Enable

Memory Instructions:
Instruction Decode,
Register/Memory Access, ALU

Choose between Arithmetic/Memory instructions with MUXs

29

Data Memory

Address

Write
Data

Read
Data

Mem Store

32

16
Inst

Write Data

Read Addr 1

Read Addr 2

Write Addr

Read
 Data 1

Read
 Data 2

ALU

ALU OpReg Write

Control
Unit

16

16

16

Register File
16

4

4

4

4

Sign
extend

164

Mem

Opcode

Rs

Rt

Rd

Rd
(offset)

Rt
0
1

1
0

0 1

Write Enable

Write Enable

Control-flow Instructions

30

Instruction Meaning Op Rs Rt Rd

BEQ Rs, Rt, offset
If R[s] == R[t] then
 PC PC + 2 + offset*2

0111 0-15 0-15 offset

...

16-bit Encoding

Op Rs Rt Rd

0111 0001 0010 1110
BEQ R1, R2, -2

Compute branch target for BEQ

31

Inst 32
16

Write Data

Read Addr 1

Read Addr 2

Write Addr

Read
 Data 1

Read
 Data 2

ALU

ALU Op

Reg Write

Control
Unit

16

16

Register File
16

4

4

4

4

Sign
extend

164

Read
Address

Instruction
Memory

+

PC

2 ov
er

flo
w

ze
ro

Shift left
by 1

+

0
1

1
0

Write Enable

Make branch decision

32

Inst Data Memory

Address

Write
Data

Read
Data

Mem Store

32
16

Write Data

Read Addr 1

Read Addr 2

Write Addr

Read
 Data 1

Read
 Data 2

ALU

ALU Op

Reg Write

Control
Unit

16

16

16

Register File
16

4

4

4

4

Sign
extend

164

Read
Address

Instruction
Memory

+

PC

2 ov
er

flo
w

ze
ro

Shift left
by 1

+ M
U

X

Branch?

Mem

0
1

1
0

0 1

Write Enable

Write Enable

What’s missing from what we covered in lecture?

o Details of Control Unit
• ALU op is not instruction opcode; some translation involved
• Reg Write bit (for ADD, SUB, AND, OR, LW)
• Mem Store bit (for SW)
• Mem bit (arithmetic/memory MUX bit)
• Branch bit (for BEQ)

o Implementation of JMP
o Implementation of HALT (basically stops the clock

running the computer; we won’t implement this)

33

See Lab 5: Processor Datapath and Arch Assignment!

not the only implementation
Single-cycle architecture

• Simple, (barely!) fits on a slide (and in our heads).
• One instruction takes one clock cycle.
• Slowest instruction determines minimum clock cycle.
• Inefficient.

Could it be better?
• Performance, energy, debugging, security, reconfigurability, …
• Pipelining
• OoO: Out-of-order execution
• SIMD: single instruction multiple data (“vector” instructions)
• Caching
• Microcode vs. direct hardware implementation
• … enormous, interesting design space of Computer Architecture

34

HW ARCH

Conclusion of unit: Computational Building Blocks (HW)

35

Topics
Transistors, digital logic gates
Data representation with bits, bit-level computation
Number representations, arithmetic
Combinational and arithmetic logic
Sequential (stateful) logic
Computer processor architecture overview

Lectures
Digital Logic
Data as Bits
Integer Representation
Combinational Logic
Arithmetic Logic
Sequential Logic
A Simple Processor

Labs
1: Transistors to Gates
2: Data as Bits
3: Combinational Logic & Arithmetic
4: ALU & Sequential Logic
5: Processor Datapath

Assignments
Gates
Zero
Bits
Circuits
Arch

Mid-semester exam 1: HW
October 19

(2 weeks from Thursday)

