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with Abstract Machine Execution Exercise Solutions
1. A simple Instruction Set Architecture 
2. A simple microarchitecture (implementation): 

Data Path and Control Logic
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Computer

Instruction Set Architecture (HW/SW Interface)

memory

Instruction 
Logic

Registers

processor

Encoded 
Instructions

Data

Instructions 
• Names, Encodings 
• Effects 
• Arguments, Results 
• Abstraction over ALUs

Local storage 
• Names, Size 
• How many Large storage 

• Addresses, Locations
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Microarchitecture (Implementation of ISA)

ALURegisters Memory
Instruction 
Fetch and 
Decode

Computer
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An example, made-up instruction set architecture for CS240

Word size = 16 bits (smaller than most real CPUs) 

• Register size = 16 bits. 
• ALU computes on 16-bit values. 

Memory is byte-addressable, accesses full words (byte pairs) 
16 registers: R0 - R15 

• R0 always holds hardcoded 0 
• R1 always holds hardcoded 1 
• R2 – R15: general purpose 

Instructions are 1 word in size. 
Separate instruction memory. 
Program Counter (PC) register 

• holds address of next instruction to execute.
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Address Contents
0 First instruction, 

low-order byte
1 First instruction, 

high-order byte
2 Second instruction, 

low-order byte
... ...

HW ISA



R: Register File
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HW ISA

Write?
0 = read 
1 = write

Write data

r

w

Write port
Register address #3

Read ports 

r

r Register address #1           

Register address #2

Read data 1

Read data 2

w

w

r = ? 
w = ?

Word size = 16 bits, # registers = 16 

ex
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R: Register File Reg Contents

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15
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HW ISA

Write?
0 = read 
1 = write

Write data

r

w

Write port
Register address #3

Read ports 

r

r Register address #1           

Register address #2

Read data 1

Read data 2

w

w

r = ? 
w = ?

Word size = 16 bits, # registers = 16 

ex

We’ll think of the 
register file like this:

Abstraction!

R0 always holds 
hardcoded 0 
R1 always holds 
hardcoded 1

How should we write 
this?
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HW ISA

We’ll think of the data memory like this:

Abstraction!M: Data Memory

Address Contents
0x0 – 0x1
0x2 – 0x3
0x4 – 0x5
0x6 – 0x7
0x8 – 0x9
0xA – 0xB
0xC – 0xD
…

A B

B

B

log2 A

Memory is byte-addressable, accesses full words (16 bits)

address size = ? ex
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HW ISA

We’ll think of the instruction memory 
like this:

Abstraction!

IM: Instruction Memory

Instructions are 1 word in size. 
Separate instruction memory. 
Program Counter (PC) register 

• holds address of next instruction to execute.

Address Contents
0x0 – 0x1
0x2 – 0x3
0x4 – 0x5
0x6 – 0x7
0x8 – 0x9
…

Program Counter 
PC

1. ins  IM[PC] 
2. PC  PC + 2 
3. Do ins

Processor 
Loop



M: Data Memory R: Register File

IM: Instruction Memory
Address Contents
0x0 – 0x1
0x2 – 0x3
0x4 – 0x5
0x6 – 0x7
0x8 – 0x9
…

PC: Program Counter 

Address Contents
0x0 – 0x1
0x2 – 0x3
0x4 – 0x5
0x6 – 0x7
0x8 – 0x9
0xA – 0xB
0xC – 0xD
…

1. ins  IM[PC] 
2. PC  PC + 2 
3. Do ins

Processor Loop
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HW ISA Reg Contents

R0 0x0000

R1 0x0001

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

Abstraction!

Abstract Machine 



Instructions
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Assembly Syntax Meaning Opcode Rs Rt Rd

ADD Rs, Rt, Rd R[d]  R[s] + R[t] 0010 s t d

SUB Rs, Rt, Rd R[d]  R[s] - R[t] 0011 s t d

AND Rs, Rt, Rd R[d]  R[s] & R[t] 0100 s t d

OR Rs, Rt, Rd R[d]  R[s] | R[t] 0101 s t d

LW Rt, offset(Rs) R[t]  M[R[s] + offset] 0000 s t offset

SW Rt, offset(Rs) M[R[s] + offset]  R[t] 0001 s t offset

BEQ Rs, Rt, offset
If R[s] == R[t] then 
  PC  PC + 2 + offset*2

0111 s t offset

JMP offset PC  offset*2 1000 offset

HALT Stops program execution 1111   

16-bit Encoding

(R = register file,  
 M = data memory)

LSBMSB
HW ISA

JMP offset is 
unsigned 

All others are 
signed



M: Data Memory R: Register File

IM: Instruction Memory
Address Contents
0x0 – 0x1 ADD R1, R1, R2
0x2 – 0x3 SW R2, 4(R0)
0x4 – 0x5 HALT
0x6 – 0x7
0x8 – 0x9
…

PC: Program Counter 

Address Contents
0x0 – 0x1 0xEB 0xCA
0x2 – 0x3 0xBD 0x56
0x4 – 0x5
0x6 – 0x7
0x8 – 0x9
0xA – 0xB
0xC – 0xD
…

1. ins  IM[PC] 
2. PC  PC + 2 
3. Do ins

Processor Loop
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HW ISA Reg Contents

R0 0x0000

R1 0x0001

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

Exercise #0 (example) 
Fill in the rest of the 
machine state based on 
this initial state

ex
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PC   Instr State Changes

0x0 ADD R1, R1, R2 R[2]  R[1] & R[1]     = 1 + 1 = 0x0002 ;   PC  PC+2 = 0+2  = 2

0x2 SW R2, 4(R0) M[R[0] + 4] = M[4]  R[2] = 0x0002;   PC  PC+2 = 6+2  = 8

0x8 HALT Program execution stops

These bytes will be stored in so-called 
Little Endian order when we store 
them to  memory M.  

That is, the byte pair 0x02 will be 
stored in the “little” end of the word
—the lower address of the pair of 
addresses that store the word. 0x00 
will be stored at the higher address.

Execution Table for Exercise #0 (shows step-by-step execution) 
Solutions ex



M: Data Memory R: Register File

IM: Instruction Memory
Address Contents
0x0 – 0x1 ADD R1, R1, R2
0x2 – 0x3 SW R2, 4(R0)
0x4 – 0x5 HALT
0x6 – 0x7
0x8 – 0x9
…

PC: Program Counter 

Address Contents
0x0 – 0x1 0xEB 0xCA
0x2 – 0x3 0xBD 0x56
0x4 – 0x5 0x02 0x00
0x6 – 0x7
0x8 – 0x9
0xA – 0xB
0xC – 0xD
…

1. ins  IM[PC] 
2. PC  PC + 2 
3. Do ins

Processor Loop
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HW ISA Reg Contents

R0 0x0000

R1 0x0001

R2 0x0002

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

Exercise #0 (example) 
Fill in the rest of the 
machine state based on 
this initial state

ex Solutions



M: Data Memory R: Register File

IM: Instruction Memory
Address Contents
0x0 – 0x1 LW R3, 0(R0)
0x2 – 0x3 LW R4, 2(R0)
0x4 – 0x5 AND R3, R4, R5
0x6 – 0x7 SW R5, 4(R0)
0x8 – 0x9 HALT
…

PC: Program Counter 

Address Contents
0x0 – 0x1 0xEB 0xCA
0x2 – 0x3 0xBD 0x56
0x4 – 0x5 0xA9 0x42

0x6 – 0x7
0x8 – 0x9
0xA – 0xB
0xC – 0xD
…

1. ins  IM[PC] 
2. PC  PC + 2 
3. Do ins

Processor Loop
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HW ISA Reg Contents

R0 0x0000

R1 0x0001

R2

R3 0xCAEB

R4 0x56BD

R5 0x42A9

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

Exercise #1: 
Fill in the rest of the 
machine state based on 
this initial state

ex
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PC   Instr State Changes

0x0 LW R3 0(R0) R[3]  M[R[0] + 0]] = M[0] = 0xCAEB;   PC  PC+2 = 0+2  = 2

0x2 LW R4, 2(R0) R[4]  M[R[0] + 2]] = M[2] = 0x56BD;  PC  PC+2 = 2+2  = 4

0x4 AND R3, R4, R5 R[5]  R[3] & R[4] = 0xA942 ; PC  PC+2 = 4+2  = 6

0x6 SW R5, 4(R0) M[R[0] + 4] = M[4]  R[5] = 0x42A9;   PC  PC+2 = 6+2  = 8

0x8 HALT Program execution stops

The bytes are swapped from the memory M picture on 
the previous page because it’s assumed that 
the bytes are stored in so-called Little Endian order.  

E.g., for the byte pair 0xEB at address 0x0 and 0xCA 
at address 0x1, the byte at the lower address 0x0 is 
stored at the “little end”  (LSB) of the 2-byte word. As 
we’ll soon see, this is consistent with the byte  
ordering in the C programming language.

Execution Table for Exercise #1 (shows step-by-step execution) 
Solutions ex



M: Data Memory R: Register File

IM: Instruction Memory
Address Contents
0x0 – 0x1 SUB R8, R8, R8
0x2 – 0x3 BEQ R9, R0, 3
0x4 – 0x5 ADD R10, R8, R8
0x6 – 0x7 SUB R9, R1, R9
0x8 – 0x9 JMP 1
0xA – 0xB HALT
…

PC: Program Counter 

Address Contents
0x0 – 0x1 0xEB 0xCA
0x2 – 0x3 0xBD 0x56
0x4 – 0x5
0x6 – 0x7
0x8 – 0x9
0xA – 0xB
0xC – 0xD
…

1. ins  IM[PC] 
2. PC  PC + 2 
3. Do ins

Processor Loop
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HW ISA Reg Contents (time:      )

R0 0x0000

R1 0x0001

R2

R3

R4

R5

R6

R7

R8 0x????    0x0000    0x0003    0x0006       

R9 0x0002   0x0001    0x0000   

R10 0x0003

R11

R12

R13

R14

R15

Exercise #2: 
Fill in the rest of the 
machine state based on 
this initial state

ex

→

→ →
→ →

→
1 2

3

4

5
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PC   Instr State Changes

0x0 SUB R8, R8, R8 R[8]  R[8] – R[8] = 0; PC  PC+2 = 0+2  = 2

0x2 BEQ R9, R0, 3 PC  PC+2 = 2+2  = 4 (because 2 = R[9] ≠ R[0] = 0)

0x4 ADD R10, R8, R8 R[8]  R[10] + R[8] = 3 + 0 = 3; PC  PC+2 = 4+2  = 6

0x6 SUB R9, R1, R9 R[9]  R[9] - R[1] = 2 – 1 = 1; PC  PC+2 = 6+2  = 8

0x8 JMP 1 PC  2*1 = 2

0x2 BEQ R9, R0, 3 PC  PC+2 = 2+2  = 4 (because 1 = R[9] ≠ R[0] = 0)

0x4 ADD R10, R8, R8 R[8]  R[10] + R[8] = 3 + 3 = 6; PC  PC+2 = 4+2  = 6

0x6 SUB R9, R1, R9 R[9]  R[9] - R[1] = 1 – 1 = 0; PC  PC+2 = 6+2  = 8

0x8 JMP 1 PC  2*1 = 2

0x2 BEQ R9, R0, 3 PC  PC+2+(2*3) = 4+6 =10 (because 0 = R[9] = R[0] = 0)

0xA HALT Program execution stops

Execution Table for Exercise #2 (shows step-by-step execution) 
Solutions

ex



ALU

microarchitecture

22

Registers Memory
Instruction 
Fetch and 
Decode

12 34

One possible hardware implementation of the HW ISA

HW ARCH



Instruction Fetch  
(default, unless branch or jump)

Fetch instruction from memory. 
Increment program counter (PC) 
to point to the next instruction.

23

Read 
Address Instruction

Instruction 
Memory

Add

PC

2

1. ins  IM[PC] 
2. PC  PC + 2 
3. Do ins

Processor 
Loop



Instruction Encoding: 3 formats
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15:12 11:8 7:4 3:0
opcode Rs Rt Rd

Arithmetic instructions: 
- 2 source register IDs (Rs,Rt) 
- 1 destination register ID (Rd)

All have 4-bit opcode in MSBs

15:12 11:8 7:4 3:0
opcode Rs Rt offset

Memory/branch instructions: 
- address/source register ID (Rs) 
- data/source register ID (Rt) 
- 4-bit offset

15:12 11:0
opcode offset

Jump instruction: 
- 12-bit offset



Arithmetic Instructions
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Instruction Meaning Opcode Rs Rt Rd

ADD Rs, Rt, Rd R[d]  R[s] + R[t] 0010 0-15 0-15 0-15

SUB Rs, Rt, Rd R[d]  R[s] – R[t] 0011 0-15 0-15 0-15

AND Rs, Rt, Rd R[d]  R[s] & R[t] 0100 0-15 0-15 0-15

OR Rs, Rt, Rd Rd  R[s] | R[t] 0101 0-15 0-15 0-15

...

16-bit Encoding

Opcode Rs Rt Rd
0010 0011 0110 1000ADD R3, R6, R8



Arithmetic Instructions:  
Instruction Decode, Register Access, ALU
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Instruction

Write Data

Read Addr 1

Read Addr 2

Write Addr

Read 
 Data 1

Read 
 Data 2

ALU
overflow

ALU Op

Reg Write

zero

Control 
Unit

ALU result16

16

16

Register File
16

4

4

4

4Opcode

Rs

Rt

Rd

Write Enable



Memory Instructions
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Instruction Meaning Op Rs Rt Rd

LW Rt, offset(Rs) R[t]  Mem[R[s] + offset] 0000 0-15 0-15 offset

SW Rt, offset(Rs) Mem[R[s] + offset]  R[t] 0001 0-15 0-15 offset

...

SW R6, -8(R3) Opcode Rs Rt Rd
0001 0011 0110 1000
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Data Memory

Address

Write 
Data

Read 
Data

Mem Store

32

16
Inst

Write Data

Read Addr 1

Read Addr 2

Write Addr

Read 
 Data 1

Read 
 Data 2

ALU

ALU OpReg Write

Control 
Unit

16

16

16

Register File
16

4

4

4

4

Sign 
extend

164

How can we support arithmetic 
and memory instructions? 

What's shared?

Opcode

Rs

Rt

Rt

Rd 
(offset)

Write Enable

Write Enable

Memory Instructions:  
Instruction Decode,  
Register/Memory Access, ALU



Choose between Arithmetic/Memory instructions with MUXs
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Data Memory

Address

Write 
Data

Read 
Data

Mem Store

32

16
Inst

Write Data

Read Addr 1

Read Addr 2

Write Addr

Read 
 Data 1

Read 
 Data 2

ALU

ALU OpReg Write

Control 
Unit

16

16

16

Register File
16

4

4

4

4

Sign 
extend

164

Mem

Opcode

Rs

Rt

Rd

Rd 
(offset)

Rt
0 
1

1 
0

0      1

Write Enable

Write Enable



Control-flow Instructions
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Instruction Meaning Op Rs Rt Rd

BEQ Rs, Rt, offset
If R[s] == R[t] then 
  PC  PC + 2 + offset*2

0111 0-15 0-15 offset

...

16-bit Encoding

Op Rs Rt Rd

0111 0001 0010 1110
BEQ R1, R2, -2



Compute branch target for BEQ
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Inst 32
16

Write Data

Read Addr 1

Read Addr 2

Write Addr

Read 
 Data 1

Read 
 Data 2

ALU

ALU Op

Reg Write

Control 
Unit

16

16

Register File
16

4

4

4

4

Sign 
extend

164

Read 
Address

Instruction 
Memory

+

PC

2 ov
er

flo
w

ze
ro

Shift left 
by 1

+

0 
1

1 
0

Write Enable



Make branch decision
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Inst Data Memory

Address

Write 
Data

Read 
Data

Mem Store

32
16

Write Data

Read Addr 1

Read Addr 2

Write Addr

Read 
 Data 1

Read 
 Data 2

ALU

ALU Op

Reg Write

Control 
Unit

16

16

16

Register File
16

4

4

4

4

Sign 
extend
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Read 
Address

Instruction 
Memory

+

PC

2 ov
er

flo
w

ze
ro

Shift left 
by 1

+ M
U

X

Branch?

Mem

0 
1

1 
0

0      1

Write Enable

Write Enable



What’s missing from what we covered in lecture? 

o Details of Control Unit 
• ALU op is not instruction opcode; some translation involved 
• Reg Write bit (for ADD, SUB, AND, OR, LW) 
• Mem Store bit (for SW) 
• Mem bit (arithmetic/memory MUX bit) 
• Branch bit (for BEQ) 

o Implementation of JMP 
o Implementation of HALT (basically stops the clock 

running the computer; we won’t implement this)
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See Lab 5: Processor Datapath and Arch Assignment!



not the only implementation
Single-cycle architecture 

• Simple, (barely!) fits on a slide (and in our heads). 
• One instruction takes one clock cycle. 
• Slowest instruction determines minimum clock cycle. 
• Inefficient. 

Could it be better? 
• Performance, energy, debugging, security, reconfigurability, … 
• Pipelining 
• OoO: Out-of-order execution 
• SIMD: single instruction multiple data (“vector” instructions) 
• Caching 
• Microcode vs. direct hardware implementation 
• … enormous, interesting design space of Computer Architecture
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HW ARCH



Conclusion of unit: Computational Building Blocks (HW)
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Topics 
Transistors, digital logic gates 
Data representation with bits, bit-level computation 
Number representations, arithmetic 
Combinational and arithmetic logic 
Sequential (stateful) logic 
Computer processor architecture overview

Lectures 
Digital Logic 
Data as Bits 
Integer Representation 
Combinational Logic 
Arithmetic Logic 
Sequential Logic 
A Simple Processor

Labs 
1: Transistors to Gates 
2: Data as Bits 
3: Combinational Logic & Arithmetic 
4: ALU & Sequential Logic 
5: Processor Datapath

Assignments 
Gates 
Zero 
Bits 
Circuits 
Arch

Mid-semester exam 1: HW 
October 19  

(2 weeks from Thursday)


