
CS 251 Fall 2019
Principles of Programming Languages
Ben WoodλCS 240

Foundations of Computer Systems

https://cs.wellesley.edu/~cs240/

Exceptional Control Flow

Hardware support for reacting to the rest
of the world.

1 Exceptional Control Flow

Control Flow
Processor: read instruction, execute it, go to next instruction, repeat

2

<startup>
inst1
inst2
inst3
…
instn
<shutdown>

Physical control flow

tim
e

Explicit changes:
Jumps (conditional, unconditional)
Call, return

Exceptional changes:
user input
data arrives from disk or network
unexpected errors

Exceptions
Synchronous: caused by instruction

Traps: system calls
Intentional: transfer control to OS to perform some function.
OS runs at higher privilege level, so cannot call directly.
Returns control to “next” instruction.

Faults: unintentional, maybe recoverable
Page faults, protection faults, divide by zero
Fix and re-execute faulting instruction or abort process.

Aborts: unintentional, unrecoverable
Hardware failure detected

Asynchronous (Interrupts): caused by external events
Incoming I/O activity, reset button, timers, signals

3

Exceptions: hardware support for OS
transfer control to OS in response to event
What code should the OS run?

4

User Code OS Kernel

exception
exception processing
by exception handler

return or abort

event

Interrupt Vector

5

0
1
2

...
n-1

Exception
Table

code for
exception handler 0

code for
exception handler 1

code for
exception handler 2

code for
exception handler n-1

...

a jump table for exceptions…

in memory
special register holds base address

Open a file (trap/system call)

6

0804d070 <__libc_open>:
 . . .
 804d082: cd 80 int $0x80
 804d084: 5b pop %ebx
 . . .

User Code OS Kernel

exception

open file
returns

int
pop

int a[1000];
void bad () {
 a[5000] = 13;
}

 80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User Code OS Kernel

exception: page fault

detect invalid address
movl

signal process

Segmentation Fault

7

Write to invalid memory location.

aborts process with SIGSEGV signal

Page Fault
Write to valid memory location
... but contents currently on disk instead

(more later: virtual memory)

8

int a[1000];
main () {
 a[500] = 13;
}

 80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User Code OS Kernel

exception: page fault
Load page into
memoryreexecute

same instruction

movl

