
CS 251 Fall 2019

Principles of Programming Languages

Ben WoodλCS 240

Foundations of Computer Systems

https://cs.wellesley.edu/~cs240/

Exceptional Control Flow

Hardware support for reacting to the rest
of the world.

1 Exceptional Control Flow

Control Flow
Processor: read instruction, execute it, go to next instruction, repeat

2

<startup>

inst1

inst2

inst3

…

instn

<shutdown>

Physical control flow

tim
e

Explicit changes:

Jumps (conditional, unconditional)

Call, return

Exceptional changes:

user input

data arrives from disk or network

unexpected errors

Exceptions
Synchronous: caused by instruction

Traps: system calls

Intentional: transfer control to OS to perform some function.

OS runs at higher privilege level, so cannot call directly.

Returns control to “next” instruction.

Faults: unintentional, maybe recoverable

Page faults, protection faults, divide by zero

Fix and re-execute faulting instruction or abort process.

Aborts: unintentional, unrecoverable

Hardware failure detected

Asynchronous (Interrupts): caused by external events

Incoming I/O activity, reset button, timers, signals

3

Exceptions: hardware support for OS
transfer control to OS in response to event

What code should the OS run?

4

User Code OS Kernel

exception
exception processing

by exception handler

return or abort

event

Interrupt Vector

5

0
1
2

...
n-1

Exception

Table

code for

exception handler 0

code for

exception handler 1

code for

exception handler 2

code for

exception handler n-1

...

a jump table for exceptions…

in memory

special register holds base address

Open a file (trap/system call)

6

0804d070 <__libc_open>:

 . . .

 804d082:	 cd 80 	 int $0x80

 804d084:	 5b 	 pop %ebx

 . . .

User Code OS Kernel

exception

open file
returns

int
pop

int a[1000];

void bad () {

 a[5000] = 13;

}

 80483b7:	 c7 05 60 e3 04 08 0d 	 movl $0xd,0x804e360

User Code OS Kernel

exception: page fault

detect invalid address
movl

signal process

Segmentation Fault

7

Write to invalid memory location.

aborts process with SIGSEGV signal

Page Fault
Write to valid memory location

... but contents currently on disk instead

(more later: virtual memory)

8

int a[1000];

main () {

 a[500] = 13;

}

 80483b7:	 c7 05 10 9d 04 08 0d 	 movl $0xd,0x8049d10

User Code OS Kernel

exception: page fault
Load page into
memoryreexecute

same instruction

movl

