

$\begin{aligned} & \frac{1}{0} \\ & 0 \\ & 3 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Program, Application
	Programming Language
	Compiler/Interpreter
	Operating System
	Instruction Set Architecture
0 0 0 3 0 0 1	Microarchitecture
	Digita Logic
	Devices (transistors, etc.)
	Solid-State Physics

Transistors

If Base voltage is high: Current may flow freely from Collector to Emitter.

If Base voltage is low: Current may not flow from Collector to Emitter.

Truth table							
$\mathbf{V}_{\text {in }}$	$\mathbf{V}_{\text {out }}$						
low	high						
high	low	in	out				
0	1						
1	0					$=$	in
:---:							

Five basic gates: define with truth tables

AND	01
0	
1	

$$
\begin{array}{l|l}
\hline & \\
\hline O R & 1 \\
\hline 0 & \\
1 &
\end{array}
$$

Integrated Circuits (1950s -)

Boolean Algebra

for combinational logic

Circuits

Translation

Connect gates to implement these functions. Check with truth tables.
Use a direct translation.
$F=(A B+C) D$
$Z=\bar{W}+(X+\overline{W Y})$

Circuits

Given input variables, circuits specify outputs as functions of inputs using wires \& gates

- Crossed wires touch only if there is an explicit dot.
- T intersections copy the value on a wire
o Don't wire together two inputs or two outputs-combine with a gate

Circuit simplification

Is there a simpler circuit that performs the same function

Start with an equivalent Boolean expression, then simplify with algebra $F(A, B, C)=$

Check the answer with a truth table.

Sum-of-products form

logical sum (OR)
of products (AND)
of inputs or their negations (NOT)

A minterm: a product of literals (variables or their negations) whose value is 1 fo that row. Like a code detector for that row!

What is the sum-of-products expression for truth table below?

How could you draw the circuit for this expression? How is it related to code detectors from the previous slide?

Circuit derivation: code detectors

AND gate + NOT gates = code detector, recognizes exactly one input code.

Design a 4 -input code detector to output 1 if ABCD $=1001$, and 0 otherwise
\qquad
Design a 4-input code detector to accept two codes (ABCD=1001, ABCD=1111) and reject all others. (accept $=1$, reject $=0$)

Voting machines

A majority circuit outputs 1 if and only if a majority of its inputs equal 1.
Design a majority circuit for three inputs. Use a sum of products.

A	B	C	Majority
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Triply redundant computers in spacecraf
https://en.wikipedia.org/wiki/Triple modular redundancy
Space program hastened Integrated Circuits.

Boolean Algebra: Simple laws

Boolean algebra laws can be proven by truth tables and used to show equivalences
For all laws in one place, see the Boolean Laws Reference Sheet

Name of Law / Theorem	Form	Equivalent/Dual form (interchange AND and OR, and 0 and 1)
Involution (or double negation)	$\overline{\bar{A}}=A$	none
Identity	$0+A=A$	$1 * A=A$
Inverse (or Complements)	$A \bar{A}=0$	$A+\bar{A}=1$
Commutativity	$A+B=B+A$	$A B=B A$
Associativity	$(A B) C=A(B C)$	$(A+B)+C=A+(B+C)$
Idempotent	$A+A=A$	$A A=A$
Null (or Null Element)	$0 * A=0$ (the Zero Law)	$1+A=1$ (the One Law)

Boolean Algebra: Proving Laws by Truth Tables

Distributive	$A+B C=(A+B)(A+C)$	$A(B+C)=A B+A C$

Right column (distributing multiplication over addition) true in the algebra of numbers; left column (distributing addition over multiplication) is not true in the algebra of number but is true for Boolean algebra!

Complete the truth tables below to show that both distributive laws hold

Boolean Algebra: More Complex Laws

Distributive	$A+B C=(A+B)(A+C)$	$A(B+C)=A B+A C$
DeMorgan's	$\bar{A}+\bar{B}+\bar{C}+\ldots=\overline{A B C \ldots}$	$\overline{A+B+C+\ldots}=\bar{A} \bar{B} \bar{C} \ldots$
Absorption 1 (Covering)	$A+A B=A$	$A(A+B)=A$
Absorption 2	$A+\bar{A} B=A+B$	$A(\bar{A}+B)=A B$
Combining	$A B+A \bar{B}=A$	$(A+B)(A+\bar{B})=A$
Consensus	$A B+\bar{A} C+B C=A B+\bar{A} C$	$(A+B)(\bar{A}+C)(B+C)=(A+B)(\bar{A}+C)$

You can use truth tables (or other Boolean laws) to convince yourself that these laws hold.

XOR: Exclusive OR

Output = 1 if exactly one input $=1$.

Build from earlier gates:

Often used as a one-bit comparator.

Boolean Algebra: Proving Laws by Algebra

Combining
$A B+A \bar{B}=A$
$(A+B)(A+\bar{B})=A$

NAND is universal

All Boolean functions can be implemented using only NANDs. Build NOT, AND, OR, NOR, using only NAND gates.

NOR is also universal $\exists \square^{-}$

All Boolean functions can also be implemented using only NORs. Build NAND using only NOR gates; then since NAND is universal, NOR must be too! (Why?)

Wellesley Connection: Mary Allen Wilkes '59

Created LAP operating system at
MIT Lincoln Labs for Wesley A. Clark's MIT Lincoin Labs for Wesley A. Clark's
LINC computer, widely regarded as the first personal computer (designed for interactive use in bio labs). Work don 1961-1965.
Created first interactive kevbord based text Created first interactive keyboard-based text editor on 256 character display. LINC had only 2 K 12 -bit words; (pa
In 1965, she developed LAP6 with LINC in Baltimore living room. First home PC user!

Early versions of LAP
Early versions of LAP
developed using LINC simulator on MIT TX2 compute, famous for GUI/PL work done by Ivan and Bert Sutherland at MIT.

Later earned Harvard law degree and headed Economic Crime and Consumer Protection Division in Middlesex (MA) County District Attorney's office.

