WELLESLEY

A\ 4

CS 240
Foundations of Computer Systems

Integer Representation

Representation of integers: unsigned and sighed
Modular arithmetic and overflow
Signh extension
Shifting and arithmetic
Multiplication
Casting

https://cs.wellesley.edu/~cs240/

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

Fixed-width integer encodings

Unsigned c N non-negative integers only

Signedc 7/, both negative and non-negative integers

n bits offer only 2n distinct values.

“Most-significant” bit(s) “Least-significant” bit(s)
. or “high-order” bit(s) or “low-order” bit(s)
Terminology: \ j
MSB 0110010110101001 L1SB

(4-bit) unsigned integer representation

1 O 1 1 =1x23+0x22+1x21+1x20
1

weight
/ g
_ position

8 4 2
23 22 21 20
3 2 1 0 <

n-bit unsigned integers:

unsigned minimum=_ 0

unsigned maximum= 2n-1

modular arithmetic, unsigned overflow

1 . O 11 1
11 1011 1 1 13 1101

+2 +0010 * 2 +5 +0101

1111
1110
1101

0000
0001
0010

12 4-bit 3
13 11071 ' /1100 incioneg) 0011 2 0010
11\ 1011 integers 0100 | 4

1010
1001
1000

0101
0110
0111

x+v in n-bit unsigned arithmetic is (x + y) mod 2N jn math

unsigned overflow = "wrong" answer = wrap-around = carry 1 out of MSB = math answer too big to fit

Unsigned addition overflows if and only if a carry bit is dropped.

(4-bit) two's complement
signed integer representation

1 O 1 1 =1x-(23)+0x22+1x21+1x20
-(23) 22 21 20

still only 2n distinct values, half negative.

4-bit two's complement integers:

signed minimum = - (2(n-1)) 4-bit min: 1000
signed maximum = 9(n-1) _ 1 4-bit max: 0111

alternate signhed attempt: sign-magnitude

Most-significant bit (MSB) is sign bit
0 means non-negative 1 means negative
Remaining bits are an unsigned magnitude

Note: this is not
two’s complement

8-bit sigh-magnitude: Anything weird here?
00000000 represents Arithmetic?
Example:
4-31=4+(-3)
01111111 represents l'
00000100

10000101 represents

+10000011

10000000 represents

Zero?

two’s complement vs. unsigned

N unsigned
T R PR S
-(2n-1) 202022 21 20 two's complement
\places
unsigned range

(21 values)
 r

_(Z(n-l)) 0 2(n-1) -1 on -1
 r
two's complement range

(21 values)

4-bit unsigned vs. 4-bit two’s complement

1 011

1x23+0x22+1x21+1x20 1x-23+40x22+1x21+1 x 20

14 1111

1110
1101

1100

0000
0001
0010

0011

1111 0000
1110 0001

1101 0010
1100 Abit 0011

13

4-bit
two's
complement

12

0100

0101
0110
0111

nsigned
11 1011 unsig 0100 4

1010 0101
1001 0110
1000 0111

1010
1001
1000

8-bit representations
00001001 10000001

11111111 00100111

n-bit two's complement numbers:

minimum = maximum =

two’s complement (signed) addition

2
+3
5

-2

+3

1

1
0010

+ 0011
0101

111
1110

+ 0011
0001

11
-2 1110
+-3 +1101
-5 1011
2 0010
+-3 +1101
-1 1111

1110 0001 \ +)
1101 0010

1100

Modular Arithmetic

10

two’s complement (signed) overflow

Addition overflows
if and only if the arguments have the same sign but the result does not.
if and only if the carry in and carry out of the sign bit differ.

1 -1 0
-1 111 — 2 1111 0000

_3 / 1110 0001 \ 4 >
+ 2 + 0010 . 1101 0010 3
o o ~ " [1100 0011 \"
001 _ | 1011 0100 |, ,
1010 0101
0 11 -6 1001 0110 /+5
6 0110 1000 0111
N -8 +7
+3 + 0011 — |
1001 Modular Arithmetic

Some CPUs/languages raise exceptions on overflow.
C and Java cruise along silently... Feature? Oops?

Recall: software correctness

Ariane 5 Rocket, 1996 =

Exploded due to cast of
64-bit floating-point number |
to 16-bit signed number. &
Overflow.

"...a Model 787 airplane ... can lose all

BOEing 787, 2015 alternating current (AC) electrical power ...

caused by a software counter internal to the
GCUs that will overflow after 248 days of
continuous power. We are issuing this AD to
prevent loss of all AC electrical power, which
could result in loss of control of the airplane.”

--FAA, April 2015

12

A few reasons two’s complement is awesome

Arithmetic hardware
The carry algorithm works for everything! Even subtraction!

Sign X-y==X+-y==x+"y+1
The MSB can be interpreted as a signh bit.

Negative one

-1, is encoded as all ones: 0111...1 _9

1111 0000

Complement rules -3/ 1110 0001 \ + 2
1101 0010

-X == ~X+1 ~4[1100 + 3

S i 110101 _g\1011 0100/, 4

~000101 is 1010 -6 0110 /+ 5

+ 1
1011 1s -5

13

Another derivation

How should we represent 8-bit negatives?

o For all positive integers x,
we want the representations of x and —=x to sum to zero.

« We want to use the standard addition algorithm.

11111111 1111111 11111111
00000001 00000010 00000011

+11111111 +11111110 +11111101
00000000 00000000 00000000

 Find arule to represent —x where that works...

Convert/cast signed number to larger type.

00000010 8-bit 2

00000010 16-bit 2

11111100 8-bit -4

11111100 16-bit -4

Rule/name?

Sign extension for two's complement

00000010 8-bit 2

00000010 16-bit2

11111100 8-bit -4

111 1111111100 16-vit -4

Casting from smaller to larger signed type does sign extension.

16

unsigned shifting and arithmetic

unsigned

X = 27; 00011011

e g

y == 108 01101100

o

logical shift left

n = shift distance in bits, w = width of encoding in bits

unsigned

101 X = 237

logical shift right Om\l‘\ »; == : : 2;

17

two's complement shifting and arithmetic

e 10011011E
Yy =X << 2; A//‘//‘//‘//
y == 108 O 1101100 logical shift left

n = shift distance in bits, w = width of encoding in bits

sighed

11101101 x = -19;

— R

shift-and-add

Available operations
X << k implements x * 2k

X + Vv

Implement v = x * 24 using only <<, +, and integer literals

y =X * (16 + 8);
y = (x * 16) + (x * 8);
Vy = (X << 4) + (x << 3)

Parenthesize shifts to be clear about precedence, which may not always be what you expect.

What does this function compute?

unsigned puzzle(unsigned X, unsigned y) {
unsigned result = 0;
for (unsigned i = 0; i < 32; i++){
if (y & (1 << 1)) {

result = result + (x << 1);

}

return result;

What does this function compute?

nybble puzzle(nybble x, nybble y) {
nybble result = 0;
for (nybble i = 0; i < 4; i++){

Y2

1f (v & (1 << 1)) {

y& (1<<i),

result,

result = result + (x << 1);

0 00O

}

return result;

21

multiplication

0010

X 0011

00000110

1110

x 0010

11111100

1111 0000
1110 0001
1101 0010

1100 0011

_ | 1011 0100

1010 0101
1001 0110
1000 0111

Modular Arithmetic

multiplication

5
X 4

0101

X 0100

200 00010100
A

3
21
5

1101

Xx 0111

11101011

1111 0000
1110 0001
1101 0010

1100 0011

_ | 1011 0100

1010 0101
1001 0110
1000 0111

Modular Arithmetic

multiplication

5 0101
X 5 x 0101
2> 00011001
-7
-2 1110
X 6 x 0110
-12- 11110100

A

1111 0000
1110 0001
1101 0010

1100 0011

_ | 1011 0100

1010 0101
1001 0110
1000 0111

Modular Arithmetic

Casting Integers in C 111

Number literals: 37 is sighed, 37U is unsigned

Integer Casting:

Explicit casting:

int tx = (int) 73U; // still 73
unsigned uy = (unsigned) -4; // big positive #

Implicit casting: Actually does

tx = ux; // tx = (int)ux;

uy = ty; // uy (unsigned)ty;
void foo(int z) { ... }
foo(ux); // foo((int)ux);

if (tx < ux) ... // if ((unsigned)tx < ux)
25

More Implicit Casting in C

If you mix unsigned and signed in a single expression, then
signed values are implicitly cast to unsigned.

How are the argument

bits interpreted?

Argument, Op Argument, Type Result
0 == 0U unsigned 1

-1 < 0 signed 1

-1 < 0U unsigned 0
2147483647 < -2147483647-1

21474836470 < -2147483647-1

-1 < -2

(unsigned)-1 < -2

2147483647 < 2147483648U

2147483647 < (1nt)2147483648U

Note: T,,;,=-2,147,483,648 T = 2,147,483,647
T.min must be writtenas —2147483647-1 (see pg. 77 of CSAPP for details)

26

Aside: real-world connection to Alexa’s research

Guest-controlled out-of-bounds read/write on
Xx86 64
alexcrichton published GHSA-ff4p-7xrq-q5r8 on Mar 8

Package Affected versions Patched versions Severity
® cranelift-codegen (Rust) <= 0.93.0,>=0.84.0 0.93.1,0.92.1, 0.91.1 9.9 /10
& wasmtime (Rust) <=6.0.0,>=0.37.0 6.0.1,5.0.1, 4.0.1 .
CVSS base metrics
Attack vector Network
.. Attack lexit
Description ack complexity Low
Privileges required Low
User interaction None
Impact
Scope Changed
Wasmtime's code generator, Cranelift, has a bug on x86_64 targets where address-mode Confidentiality High
computation mistakenly would calculate a 35-bit effective address instead of WebAssembly's Integrity High
defined 33-bit effective address. This bug means that, with default codegen settings, a
Availability High

wasm-controlled load/store operation could read/write addresses up to 35 bits away from the
base of linear memory. Wasmtime's default sandbox settings provide up to 6G of protection
from the base of linear memory to guarantee that any memory access in that range will be
semantically correct. Due to this bug, however, addresses up to oxffffffff x 8 +
Ox7ffffffc = 36507222004 = ~34G bytes away from the base of linear memory are possible

CVEID

from guest code. This means that the virtual memory 6G away from the base of linear
memory up to ~34G away can be read/writter] by a malicious module. CVE-2023-26489

CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:C/
C:H/I:H/A:H

Security-critical bug in shift-and-extend code

) Guest-controlled out-of-bounds read/write on x86_64
GHSA-ff4p-7xrg-g5r8 published on Mar 8 by alexcrichton

Conceptually, the compiler tried to convert this with a 32-bit x:
32 bilts

| | << 2

| |
04 bits
| | | zero extend

address + zero extend 64 (x << 2)

To this:

04 bits 32 bits

A

Incorrect address calculated!

address + (zero extend 64 (x) << 2)

28

