
CS 251 Fall 2019

Principles of Programming Languages

Ben WoodλCS 240

Foundations of Computer Systems

https://cs.wellesley.edu/~cs240/

Practice problems
For Exam 2: ISA

1

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

2-D array practice problem

2

long a[2][3]; 1. Draw a picture of how this array is laid out in memory, labeling the
indices and byte offset of each element (starting with a[0][0] at
offset +0);

2. Write x86 assembly code to
implement this function.

long get_elem_1_2(long a[2][3]){

 return a[1][2];

}

Recall: index = C*r + c

 scale by element size

ex

x86 arithmetic practice problem

3

long funmath1(long x, long y) {

 return 2*x + 4*y + 21;

}

Implement the above functions in x86 without addq or mulq.

You can use leaq and any other x86 instruction.

Recall: addressing modes can only multiply by 1, 2, 4, or 8.

ex

long funmath2(long x, long y) {

 return 6*x + 5*y + 21;

}

long funmath0(long x, long y) {

 return x + 4*y + 21;

}

x86 struct/LinkedList practice problem

4

Consider the above function that calculates something useful about a linked list of
unsigned integers using a helper function.

1. Identify which pieces of x86 refer to next and value.

2. Identify the base case of the recursive function nodeFunc2. What is returned in

this case?

3. Identify the recursive case of nodeFunc2. What is the argument passed to the

recursive call?

4. What is nodeFunc1 calculating with helper nodeFunc2?

ex
nodeFunc2:
 pushq %rbp
 pushq %rbx
 subq $8, %rsp
 movl %esi, %ebx
 movslq %esi, %rax
 testq %rdi, %rdi
 je .L1
 movq %rdi, %rbp
 movl 8(%rdi), %esi
 cmpl %esi, %ebx
 jb .L5
.L3: movq 0(%rbp), %rdi
 movl %ebx, %esi
 call nodeFunc2
.L1: addq $8, %rsp
 popq %rbx
 popq %rbp
 ret
.L5: movl %esi, %ebx
 jmp .L3

typedef struct Node {
 struct Node* next;
 unsigned int value;
} Node;

long nodeFunc2(Node* node, unsigned int x) {
 // ???
}

long nodeFunc1(Node* node) {
 nodeFunc2(node, 0);
}

Struct practice problem (similar to CSAPP 3.45)

5

struct s {

 char *a;

 short b;

 int *c;

 char d;

 int e;

 char f;

};

1. Draw a picture of how this struct is laid out in memory, labeling the
byte offset of each field (starting with a at offset +0);

2. Modify your picture to show how much space a single element of this

struct would take if used as an element of an array (e.g., the total size).

3. Rearrange the fields of the struct to minimize wasted space. Draw the
new offsets and the total size.

Recall: a short is

2 bytes in C

ex

x86 recursive procedure practice problem

6

 mystery:

401106 mov $0x0,%eax

40110b test %edi,%edi

40110d jne 401110 <mystery+0xa>

40110f ret

401110 push %rbx

401111 mov %esi,%ebx

401113 sub $0x1,%edi

401116 call 401106 <mystery>

40111b movslq %ebx,%rsi

40111e add %rsi,%rax

401121 pop %rbx

401122 ret

1. What registers is being saved to the stack? Why?

2. What instruction address gets saved to the stack? Why?

3. What is this function computing?

4. Fill in the top of this stack after the
function returns to main for
mystery(2, 5).

What is each value returned, in
order?

0x7fdf28
<ret address

in main>
main

mystery(2, 5)

ex

x86 short answer practice problems

7

ex

1. Which x86 instructions implicitly modify the stack? In what ways does each change the
stack pointer?

2. What are some things defined by the word size in x86? What is the word size we have been
using for x86 in class?

3. Describe the general idea of a buffer overflow exploit in C code compiled to x86.

