WELLESLEY

A\ 4

CS 240
Foundations of Computer Systems

Practice problems

https://cs.wellesley.edu/~cs240/

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

2-D array practice problem

long al[2]1[3]; 1. Draw a picture of how this array is laid out in memory, labeling the

indices and byte offset of each element (starting witha[0] [O] at
offset +0);

Recall: index = C*r + c
scale by element size

long get elem 1 2(long afl2][3]) {
return al[l]l[2];

2. Write x86 assembly code to
implement this function.

J

Xx86 arithmetic practice problem

long funmathO (long x,

J

return x + 4*y + 21;

long y)

long funmathl (long x,

J

return 2*x + 4*y + 21;

Llong y) |

long funmath2 (long x,

J

return 6*x + 5*y + 21;

long y)

Implement the above functions in x86 without addg ormulg.
You can use 1leaqg and any other x86 instruction.

Recall: addressing modes can only multiply by 1, 2, 4, or 8.

x86 struct/LinkedList practice problem

nodeFunc?2:

L3¢

Ll

L5

pushqg
pushqg

subqg
movl

movslqg
testqg

je
movdq
movl
cmpl
jb
movdqg
movl
call
addq
popd
popq
ret
movl
Jmp

Srbp

3rbx

S8, %rsp
3%esl, %ebx
%esl, %rax
$rdi, %rdi
L1

$rdi, %rbp
8(%rdi), %esi
%esl, %ebx
.L5

0(%rbp), %rdi
%ebx, %esl
nodeFunc?2

S8, %rsp

3rbx

Srbp

%esl, %ebx
.L3

typedef struct Node {
struct Node* next;
unsigned int value;
} Node;

long nodeFunc?2 (Node* node, unsigned int Xx) {
[/ 2272
}

long nodeFuncl (Node* node) {
nodeFunc2 (node, 0);

}

Consider the above function that calculates something useful about a linked list of
unsigned integers using a helper function.

1. Identify which pieces of x86 refer to next and value.

2. ldentify the base case of the recursive function nodeFunc2. Whatis returned in
this case?

3. ldentify the recursive case of nodeFunc2. What is the argument passed to the
recursive call?

4. What is nodeFunc1 calculating with helper nodeFunc?2?

Struct practice problem

struct s { 1. Draw a picture of how this struct is laid out in memory, labeling the
char *aj byte offset of each field (starting with a at offset +0);
short b;
int *c;
char d;
int e; 2. Modify your picture to show how much space a single element of this
s char f; struct would take if used as an element of an array (e.g., the total size).

Recall: a short is 3. Rearrange the fields of the struct to minimize wasted space. Draw the
2 bytes in C new offsets and the total size.

X86 recursive procedure practice problem

4011
4011
4011
4011
40111
40111
40111
40111
40111
40111
4011
4011

mystery:
-0x0, seax 1. What registers is being saved to the stack? Why?

06 mov
Ob test
0d Jne
ret
push
mov

sub
call

O
D O o W O Hh

add
21 pop
22 ret

sedi, sed1l
401110 <mystery+0xa>

2. What instruction address gets saved to the stack? Why?

srbx
zes1l, sebx

$0x1,Sedi 3. What is this function computing?

401106 <mystery>

movslg %Sebx, srsi

$rsi, srax

5 Ox7f£df28
TTrbox

4. Fill in the top of this stack after the
function returns to main for

mysterv (2, 95).

What is each value returned, in
order?

<ret address
in main>

main

mystery (2,

>)

Xx86 short answer practice problems

1. Which x86 instructions implicitly modify the stack? In what ways does each change the
stack pointer?

2. What are some things defined by the word size in x86? What is the word size we have been
using for x86 in class?

3. Describe the general idea of a buffer overflow exploit in C code compiled to x86.

