

Motivation: what data do we need to track?

ex

What data structures could we use to track this?

Actual dynamic memory allocator design

Design the allocator to store data "inline" within the heap memory itself

- Space efficient: no need for much data "on the side"
- Use pointer arithmetic to calculate results
- Good use of caches/locality (we'll cover more later)

Implementation issues

- 1. Determine how much to free given just a pointer.
- 2. Keep track of free blocks.
- 3. Pick a block to allocate.
- 4. Choose what do with **extra space** when allocating a structure that is smaller than the free block used.
- 5. Make a freed block available for future reuse.

Keep length of block in header word preceding block

Takes extra space!

p0 = malloc(32);

block size metadata data payload

free (p0);

Keeping track of free blocks Method 1: Implicit free list of all blocks using length Method 2: Explicit free list of free blocks using pointers Method 3: Seglist Different free lists for different size blocks More methods that we will skip...

Explicit free list: freeing a block Insertion policy: Where in the free list do you add a freed block? LIFO (last-in-first-out) policy Pro: simple and constant time Con: studies suggest fragmentation is worse than address ordered Address-ordered policy Con: linear-time search to insert freed blocks Pro: studies suggest fragmentation is lower than LIFO LIFO Example: 4 cases of freed block neighbor status.

Summary: Explicit Free Lists

Implementation: fairly simple

Allocate: O(free blocks) vs. O(all blocks)

Free: O(1) vs. O(1)

Memory utilization:

depends on placement policy

larger minimum block size (next/prev) vs. implicit list

Used widely in practice, often with more optimizations.

Splitting, boundary tags, coalescing are general to all allocators.

Seglist allocators

Each size bracket has its own free list

Faster best-fit allocation...

Summary: allocator policies

All policies offer trade-offs in fragmentation and throughput.

Placement policy:

First-fit, next-fit, best-fit, etc.

Seglists approximate best-fit in low time

Splitting policy:

Always? Sometimes? Size bound?

Coalescing policy:

Immediate vs. deferred

26

