

Gray Codes = reflected binary codes

Alternate binary encoding
designed for electromechanical switches and counting.

00	01	11	10				
	0	1	2	3			
000	001	011	010	110	111	101	100
0	1	2	3	4	5	6	7

How many bits change when incrementing?

Recall: sum of products

logical sum (OR)
of products (AND)
of inputs or their complements (NOT).

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{M}
$\mathbf{0}$	0	0	$\mathbf{0}$
$\mathbf{0}$	0	1	$\mathbf{0}$
0	1	0	$\mathbf{0}$
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Construct with:

- 1 code detector per 1-valued output row
- 1 large OR of all code detector outputs

Is it minimal?

Karnaugh Maps: find (minimal) sums of products

Truth table:				
\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	F(A, B, C, D)
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	0
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	1
1	0	1	1	1
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

To build a k-map (best for functions of 2-4 inputs)

1. Split the inputs, half as the header row and half as the header column.
2. Put the input values as products in gray code order.
3. Fill in each cell based on the truth table.

Karnaugh Maps: find (minimal) sums of products

CD

Truth table:					K-map:	$\xrightarrow{\text { gray code }} \text { order } \longrightarrow 00$			CD		
A	B	C	D	F(A, B, C, D)					01	11	10
A	0	0	0	${ }_{0}$							
0	0	0	1	0			00	0	0	0	0
0	0	1	0	0							
0	0	1	1	0		AB	01	0	0	0	1
0	1	0	0	0							
0	1	0	1	0			11	1	1	0	1
0	1	1	0	1							
0	1	1	1	0			10	1	1	1	1

To derive a minimal expression from a k-map

1. Cover exactly the $1 \mathbf{s}$ by drawing a (minimum) number of (maximally sized) rectangles whose dimensions are powers of 2. - They may overlap or wrap around!
2. For each, make a product of the inputs (or complements) that are 1 for all cells in the rectangle. (minterms)
3. Take the sum of these products

$\begin{array}{lllll}1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0\end{array}$
$\begin{array}{llllll}1 & 0 & 0 & 0 & 1 & \\ 1 & 0 & 0 & 1 & 1 & \text { To convert to algebra: } \\ 1 & 0 & 1 & 0 & 1\end{array}$
$\begin{array}{llllll}1 & 0 & 1 & 0 & 1 & \text { 1. Any literals that change are excluded from the product. } \\ 1 & 0 & 1 & 1 & 1 & \end{array}$
4. A literal that is always 1 should be included as is.
5. A literal that is always 0 should be negated and included.
6. Take the sum of these products

Karnaugh Maps and Wrapping

CD

Blocks of 1s in Karnaugh maps can wrap around sides and even 4 corners.

Give the minimal sum-of-products
for the Karnaugh map to the left.

The grouping and ordering of variables in a Karnaugh map doesn't matter, but the AB/CD ordering is easier to read from a truth table.

Convince yourself that the AC/DB table is equivalent to the $\mathbf{A B} / \mathbf{C D}$ table and has the Same sum-of-products expression. In this particular AC/DB table, no wrapping is required for the rectangles!

-

Karnaugh Maps and Ambiguity

CD

The minimal sum-of-products expression for a Karnaugh map may not be unique.
Ambiguity is introduced when an arbitrary choice needs to be made.

An example of ambiguity is this Karnaugh map. Give four

		00	01	11	10
	00	1	1	1	1
	01	1	1	0	1
	11	1	1	1	1
AB	10	0	0	0	0

AB
different minimal sum-of-product expressions for this map.

Voting again with Karnaugh Maps

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{M}
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Toolbox: Building Blocks

Goal for the next 3 weeks: Simple Processor

Decoders

Decodes input number, asserts corresponding output.
n-bit input (an unsigned number)
2^{n} outputs
Built with code detectors.
$B_{0} \cdot D^{-}$

D_{1}
$\mathrm{B}_{1} . \square$
-D- D_{3}

Recall: decoders and multiplexers

A decoder has an n-bit input and 2^{n} outputs. Only 1 output active at once.

A multiplexer has 2^{n} inputs, n selector wires, and 1 output.

Warmup question: is the following a decoder or a multiplexer?

Decoder

Multiplexer (mux)

None of the above

8-to-1 MUX

Multiplexers

Select one of several inputs as output.

MUX + voltage source $=$ truth table

Build a 2-to-1 MUX from gates

If $S=0$, then $F=D_{0}$.
If $S=1$, then $F=D_{1}$.

1. Construct the truth table.

2. Build the circuit.

Buses and Logic Arrays

A bus is a collection of data lines treated as a
single logical signal.
$=$ fixed-width value
An array of logic elements (logical array) applies same operation to each bit in a bus.
= bitwise operator

