
CS 251 Fall 2019
Principles of Programming Languages
Ben WoodλCS 240

Foundations of Computer Systems

https://cs.wellesley.edu/~cs240/

Combinational Logic
Karnaugh maps

Building blocks: encoders, decoders,
multiplexers

1

Abstraction!

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

Recall: sum of products
logical sum (OR)
of products (AND)
of inputs or their complements (NOT).

2

A B C M

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Construct with:
• 1 code detector per 1-valued output row
• 1 large OR of all code detector outputs

Is it minimal?

But first…

Gray Codes = reflected binary codes

Alternate binary encoding
designed for electromechanical switches and counting.

3

00 01 11 10
 0 1 2 3

000 001 011 010 110 111 101 100
 0 1 2 3 4 5 6 7

How many bits change when incrementing?

Karnaugh Maps: find (minimal) sums of products

4

A B C D F(A, B, C, D)
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 0
1 0 0 0 1
1 0 0 1 1
1 0 1 0 1
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

00 01 11 10

00

01

11

10

AB

CD

To build a k-map (best for functions of 2-4 inputs)
1. Split the inputs, half as the header row and half as the header

column.
2. Put the input values as products in gray code order.
3. Fill in each cell based on the truth table.

gray code
order

ex
Truth table: K-map:

0 0 0 0

0 0 0 1

1 1 0 1

1 1 1 1

Karnaugh Maps: find (minimal) sums of products

5

A B C D F(A, B, C, D)
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 0
1 0 0 0 1
1 0 0 1 1
1 0 1 0 1
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

00 01 11 10

00 0 0 0 0

01 0 0 0 1

11 1 1 0 1

10 1 1 1 1

AB

CD

To derive a minimal expression from a k-map
1. Cover exactly the 1s by drawing a (minimum) number of

(maximally sized) rectangles whose dimensions are powers of 2.
• They may overlap or wrap around!

2. For each, make a product of the inputs (or complements) that are
1 for all cells in the rectangle. (minterms)

3. Take the sum of these products.

gray code
order

ex
Truth table: K-map:

Karnaugh Maps: find (minimal) sums of products

6

A B C D F(A, B, C, D)
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 0
1 0 0 0 1
1 0 0 1 1
1 0 1 0 1
1 0 1 1 1
1 1 0 0 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

00 01 11 10

00 0 0 0 0

01 0 0 0 1

11 1 1 0 1

10 1 1 1 1

AB

CD

To convert to algebra:
1. Any literals that change are excluded from the product.
2. A literal that is always 1 should be included as is.
3. A literal that is always 0 should be negated and included.
4. Take the sum of these products.

gray code
order

ex
Truth table: K-map:

AC’ + AB’ + BCD’

Karnaugh Maps and Wrapping

7

00 01 11 10
00 1 0 0 1
01 0 0 0 0
11 1 0 0 1
10 1 0 0 1AB

CD

Blocks of 1s in Karnaugh maps can
wrap around sides and even 4 corners.

Give the minimal sum-of-products
for the Karnaugh map to the left.

00 01 11 10
00 1
01 1
11 1 1
10 1 1

AC

DBThe grouping and ordering of variables in a
Karnaugh map doesn’t matter, but the AB/CD
ordering is easier to read from a truth table.

Convince yourself that the AC/DB table is
equivalent to the AB/CD table and has the
Same sum-of-products expression. In this
particular AC/DB table, no wrapping is
required for the rectangles!

ex

Karnaugh Maps and Ambiguity

8

00 01 11 10
00 1 1 1 1
01 1 1 0 1
11 1 1 1 1
10 0 0 0 0AB

CD
The minimal sum-of-products expression for a Karnaugh
map may not be unique.

Ambiguity is introduced when an arbitrary choice needs to
be made.

An example of ambiguity is this Karnaugh map. Give four
different minimal sum-of-product expressions for this map.

ex

Voting again with Karnaugh Maps

9

A B C M

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

ex

ALU

Goal for the next 3 weeks: Simple Processor

10

Registers Memory
Instruction
Fetch and
Decode

Toolbox: Building Blocks

11

Devices (transistors, etc.)

Digital Logic

Microarchitecture

Gates

Flip-Flops
Latches

Decoders
Encoders

Multiplexers
Demultiplexers

Arithmetic Logic Unit

Registers

Memory

Adders

Instruction Decoder

Abstraction!

Processor datapath

Decoders

Decodes input number, asserts corresponding output.
n-bit input (an unsigned number)
2n outputs
Built with code detectors.

12

D0

D1

D2

D3

B0

B1

B0

B1

D0

D1

D3

D2

00

01

10

11

B1B0

ex

3-bit
decoder

13

14

Recall: decoders and multiplexers
A multiplexer has 2n inputs,
n selector wires, and 1 output.

15

A decoder has an n-bit input
and 2n outputs. Only 1 output
active at once.

Combinational Logic

8-to-1 MUX

16

Multiplexers
Select one of several inputs as output.

17

D0
D1
D2
D3
D4
D5
D6
D7

F8-to-1
MUX

A B C

2n data inputs 1 data output

n selector lines

000

001

010

011

100

101

110

111

Build a 2-to-1 MUX from gates

18

D0

D1

F
2-to-1
MUX

S

If S=0, then F=D0.
If S=1, then F=D1.

1. Construct the truth table.

2. Build the circuit.

0

1

ex

MUX + voltage source = truth table

19

A B C M

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

M
8-to-1
MUX

A B C

0

1

2

3

4

5

6

7

M
8-to-1
MUX

A B C

0

1

2

3

4

5

6

7

0 1

Buses and Logic Arrays

A bus is a collection of data lines treated as a
single logical signal.
= fixed-width value

An array of logic elements (logical array) applies
same operation to each bit in a bus.
= bitwise operator

20

