WELLESLEY

A\ 4

CS 240
Foundations of Computer Systems

.. Sequential Logic
B and State

Output depends on inputs and stored values.
(vs. combinational: output depends only on inputs)

Elements to store values: latches, flip-flops, registers,
memory

https://cs.wellesley.edu/~cs240/

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

Motivation

Control Lines

{

Now that we have ALUs to perform
computations, how do we store the
results?

Operand A)

m) Result How do we calculate different results

Operand B gm) over time?

|

. Answer: we need circuits that depend not
Condition Codes P

just on inputs, but also on prior state
= Sequential Logic

Can you think of an example from lab of a sequential circuit you used?
Hint: previous button pushes are past state.

Nobody has responded yet.

Hang tight! Responses are coming in.

B Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Example from previous lab

Processor: Data Path Components

Instruction

Fetch and Registers
Decode

Goal for this section

Design a circuit state that holds a state over time

e \We should be able to set the valueto O or 1
e \We should be able to read the value off the circuit

First attempt: Unstable circuit

Q qQ HowcanQ=Q’ ?

Q <«
o

Have this issue with any odd number of inverters in a loop.

Second attempt: stable circuit?

Things are more sensible Suppose we somehow geta 1 (ora0?) on here.

with an even number of
inverters in a loop. .
> Q Q
o >

or

Now stable, but how do we set the value?

Bistable latches

Things are more sensible Suppose we somehow geta 1 (ora0?) on here.

with an even number of
inverters in a loop. .
> Q Q
o >

SR latch

Qnext Q next
stable) (stable)
0

0O O 1
0O O 1 0 1 0
1 0 any any 1 0
0 1 any any 0 1 Violates invariant that
1 1 any any 0 0 < Q and Q’ are inverses!

10

SR latch

Move from the

circuit we built to
the canonical form

11

SR latch

N2 Q

v—w S

Meets our goals:

Figure 3.5 SR latch schematic

e Able to setthevaluetoOor1
e Able to read the value off the circuit

12

H
[]
How dowesetQto1l?

s 3\
S=0;R=0

. J/

a)

S .)
Figure 5.5 SR latch schematic (\
S=1;R=1

None of the above

. J/

B Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

How dowesetQto1l?

S=0:R=0

S=1;R=0

R
m' Q S=0:R=1
u I
ﬂ _ S=1;R=1
s—|N2p-a |

Figure 3.3 SR latch schematic LS R s

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

0%

How dowesetQto1l?

S=0:R=0

S=1;R=0

R
m' Q S=0:R=1
u I
ﬂ _ S=1;R=1
s—|N2p-a |

Figure 3.3 SR latch schematic LS R s

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

0%

0%

0%

0%

0%

SR latch

N2 Q

— S

Meets our goals:

But:

Figure 3.5 SR latch schematic

e Able to setthevaluetoOor1
e Able to read the value off the circuit

e Ambiguous whenS=1andR=1
e No distinction between new value and timing

16

D latch L

D E ® d \ R \)) E Q
1 : . % O)
Goals: Data bit : z :
e Only 1 bit for data | i
e Control over timing) i —) >@ : Q
L s .
Clock | |

EEN I DI N BN B DI DI DEEE BEEE BEEE BEEN BIEN BN BEGE BEGN BENN BN S e B e B mee mew sew b

if C=0, then SR latch stores current value of Q.

if C=1, then D flows to Q:
tfD=0,thenR=1andS=0,Q=0
ifD=1,thenR=0andS=1,Q=1

Notes:

« Data bit D replaces S & R: it’s the bit value we want to store when Clock =1
e Internally, Data bit D prevents bad case of S=R =1

 This logic is level-triggered; as long as Clock = 1, changes to D flow to outputs

Time matters!

Assume Q has an initial state of O

18

In general: clocks

Clock: free-running signal

with fixed cycle time = clock period =T.

Clock frequency =1 / clock period

Falling edge

/
N -

Clock period Rising edge

A clock controls when to update a sequential logic element's state.

Aside: “Clock frequency”

Microprocessor Clock Speed

10" Loganthmic Flot
k' —
Clock frequency

=1/period=1/s=Hz
10" -

107 =

(Hz)

r ? 0.9699

Typical CPU: 3-4 GHz 10° =

10" =

107 = | ' | | ’ I | | ’
1975 | 980 | 985 1990 | 995 2000 2005 2010 2015 2020

Doublng ime: 3 years Year

20

Synchronous systems

Inputs to state elements must be valid on active clock edge.

State / | \ State
element ‘Co&bmatmnal logic ‘element
1 / 2

D fllp-flop with falling-edge trigger

| D latch D latch :
i C|_ CF clF : Q
c E o >G i
Q still=Q,,,
gssuame I follower stores
= (|
now = Qnex dS Q
Clock [|
leader stores \ |
D = Qnext as . Y

22

Time matters! D fllp-flop with falling-edge trigger

Assume Q and E have an initial state of O

Reading and writing in the same cycle

Clock

1 D

Q
D Flip-Flop

> C Q

>>©

Assume Q is initially O.

Moral: It’s OK to use the current output Q of a flip-flop as
part of the the next data input D to the same flip-flop.

24

D flip-flop = one bit of storage

1D Q
D Flip-Flop

> C Q

The bit value of D when C has a falling edge is
remembered at Q until the next falling edge of C.

Registers

Instruction
Fetch and Registers

\

Decode

Assembly code (later this semester):

addg “rdi,srsi

26

*Half a byte!

A 1-nybble* register

(a 4-bit hardware storage cell)

Write value 0 {D Q
D Flip-Flop
> C Q 4
1 . D Q
~ CD FI|p-FIop6 Clock line may be indicated
0 D Q

D Flip-Flop
> C Q
Q

1 D

D Flip-Flop
> C Q

Shared clock

write control _:)
Clock —

Register file

—>| Register address #1

——o>| Register address #2 Read data 1 ™
r Read ports
Why 2?
| Read data 2 ™
—~>| Register address #3
—> Write data
Write port

0 = read r = log, number of registers
1 = write w = bits in word

Array of registers, with register selectors, write/read control,
input port for writing data, output ports for reading data.

Read ports
(data out)

Register address #1
(log, k bits)

Register address #2
(log, k bits)

Register O

Register 1

Register k - 2

Register k - 1

Data read from

4 register address #1

(n bits)

\» Dataread from

i register address #2
(n bits)

29

Read ports
(data out)

Register address #1
(log, k bits)

Register address #2
(log, k bits)

Register O

Register 1

Register k - 2

Register k - 1

\—» Data read from

4 register address #1

(n bits)

\» Dataread from

i register address #2
(n bits)

30

Write port
(data in)

write control |
clock — >

Register O

Address of register
to write to
(log, k bits) Register 1

Register k - 2
D

C
Register k- 1

Data to write D

(n bits) n

31

Write port
(data in)

write control |
clock — >

Register O

Address of register __|
to write to |
(log, k bits) Register 1

Register k- 1

Data to write
(n bits) n

32

Registers summary

—

P | Registers ‘;‘ .
——

e For our purposes: implemented with flip-flops
e \Very fast access
e Limited in size:
e Need an m-to-2mdecoder
e CPUs typically have ~10s of words of register storage

33

Registers summary

—

| . -

—

e We'll think about at a higher level of abstraction
e Designed to handle a much larger amount of data
e CPUs can have millions-billions of words of memory storage

34

log, A

”

1B

Address

A x B RAM

Write
Enable

Data Out

Data In

/’B

RAM (Random Access Memory)

e Ais number of words in RAM
o Specify the desired word by an address of size log, A

 Bisthe width of each word (in bits)

16 x 4 RAM

4-bit
address

1101 —

4to 16
decoder

data

out

36

