WELLESLEY
CS 240

Foundations of Computer Systems

Virtual Memory

Process Abstraction, Part 2: Private Address Space

Motivation: why not direct physical memory access?
Address translation with pages
Extra benefits: sharing and protection

Memory as a contiguous array of bytes is a lie! Why?

https://cs.wellesley.edu/~cs240/

Problems with physical addressing

Main memory

0:

1:

Physical address 2:

(PA) 3:

4:

CPU 2 p
6:

7:

8:

Data

Problem 1: memory management

Main memory

Process 1
stack

Process 2 X heap What goes

Process 3 where?
code

globals

Process n

Also:

Context switches must swap out entire memory contents.
Isn't that expensive?

Problem 2: capacity

64-bit addresses can address
several exabytes
(18,446,744,073,709,551,616 bytes)

Physical main memory offers
a few gigabytes
(e.g. 8,589,934,592 bytes)

(To scale with 64-bit address space,
you can't see it.)

°~J

virtual address space per process,
with many processes...

Problem 3: protection

Physical main memory

Process i
Process j

Problem 4: sharing

Physical main memory

Process i
Process j

Solution: Virtual Memory (address indirection)

S] data
g
Process 1 §
§ virtual .
£ addresses Physical memory
: VR Single physical address space
g mapping physical managed by 0S/hardware.
g addresses
Process n ?
] virtual
§ L__| addresses data

Indirection non

(it's everywhere!)

Direct naming non
II2II
What X
o currently
X \naps to 7

Indirect naming "y
IIXII /
IIXII

What if we move Thing?

.
-’

P
.
-,
-

N oo AW N RO

Tangent: indirection everywhere

o Pointers

» Constants X

« Procedural abstraction \

« Domain Name Service (DNS) \\

« Dynamic Host Configuration Protocol (DHCP) \\h

e Phone numbers

- 911

« Call centers

 Snail mail forwarding

* .. “Any problem in computer science can be solved by adding another level of indirection.”

—David Wheeler, inventor of the subroutine, or Butler Lampson

Another Wheeler quote? "Compatibility means deliberately repeating other people's mistakes." =

Virtual addressing and address translation

Memory Management Unit
translates virtual address to physical address
Main memory

Q

CPU Chip

Virtual address Physical address
(PA)

PNOURVWNE

Data

Page-based mapping

fixed-size, aligned pages

Virtual page size = power of two
Address Space
Virtual Physical
P":)ge Address Space
0 =
Virtual T:,yswa
Page de
1
Virtual Physlca
Page) | Page
= 1
Virtual
Page Map virtual pages Y
3 .
onto physical pages. Physica
eee | Page
o1 21
Virtual -1
Page
n-1 | 2v-1 Some virtual pages do not fit!

Where are they stored?

Cannot fit all virtual pages! Where are the rest stored?

Virtual Memory virtual address space
Address Space usually much larger than
Virtual physical address space
Page
0
Virtual
Page
1
Virtual
Page
2
Virtual
Page
3

1. On disk if used

tu;
-1 * ‘2. Nowhere if not yet?) used

Virtual memory: cache for disk?

Not drawn to scale!

SRAM DRAM
(A
~4 MB ~8 GB ~500 GB
L1
I-cache
B Main D H k
32KB unified IS
cache Memory
cp Reg L1
v D-cache
Throughput: 16 B/cycle 8 B/cycle 2 B/cycle 1B/30 cycles . . .
Latency: 3 cycles 14 cycles 100 cycles millions solid-state "flash
or
A A spinning
magnetic platter.
Cache miss penalty
(latency): 33x -
Memory miss penalty
Example system (latency): 10,000x

Address translation

Main memory

0:

1:

Physical address 2

(PA)
4

CPU Chip

Virtual address

Data

Page table

array of page table entries (PTEs)

Physical pages
(Physical memory)

mapping virtual page to where it is stored VP 1
Physical Page Number
Valid or disk address VP 2
PTEO | O null
1 — VP 7
1
— VP4
0 o
1 o—~— |
0 null N
0 e /’\
PTE7 | 1 . N Swap space
page table .. . (08K
7 oo o w3
Memory resident, \‘\
managed by HW (MMU), OS N VP 6

PPO

PP3

Virtual memory benefits:
Simple address space allocation

Process needs private contiguous address space.

Virtual Address Spaces Physical Address Space (DRAM)
Process 1: ° 0
VP 1
w2 | > 2
nal]
PP 6
Process 2: 0
: PP 8
T PP9
VP 2
wal] wal—]

Virtual memory benefits:
Protection:

All accesses go through translation.
Impossible to access physical memory not mapped in virtual address space.

Sharing:

Map virtual pages in separate address spaces to same physical page (Pr6).

Virtual Address Spaces Physical Address Space (DRAM)

Process 1: 0 0

VP 1

w2 | [2

wal]
(e.g., -only
RES library code: libc)

Process 2: P8

VP 1

VP2

Virtual memory benefits:
Memory permissions

MMU checks on every access.
Exception if not allowed.

/
permission bits Physical
Process 1: Valid READ WRITE EXEC Physical Page Num Address Space
VP 0: Yes No No Yes PP 6
VP1: | Yes No No Yes PP 4
VP2: | Yes Yes Yes No PP2 L2
Page Table PP 4
=Y
permission bits PP6
Process 2: Valid READ WRITE EXEC Physical Page Num P8
VPO: [Yes | Yes | Yes [No PP9 BBl
VPL [Yes | No | No | Yes PP 6
VP2: [Yes | Yes | No | No PP 11 PP 11

Page Table

Summary: virtual memory

Programmer’s view of virtual memory

Each process has its own private linear address space
Cannot be corrupted by other processes

System view of virtual memory

Uses memory efficiently (due to locality) by caching virtual
memory pages
Simplifies memory management and sharing
Simplifies protection -- easy to interpose and check permissions
More goodies:

« Memory-mapped files

» Cheap fork () with copy-on-write pages (COW)

Virtual Physical
VP 1
VP2 PP 2
PP 6
PP 8
T PP
VP 2

