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Virtual Memory

Process Abstraction, Part 2: Private Address Space

Motivation: why not direct physical memory access?
Address translation with pages
Extra benefits: sharing and protection

Memory as a contiguous array of bytes is a lie! Why?

https://cs.wellesley.edu/~cs240/
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Problem 1: memory management
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Also:

Context switches must swap out entire memory contents.
Isn't that expensive?

Problem 2: capacity

64-bit addresses can address
several exabytes
(18,446,744,073,709,551,616 bytes)

Physical main memory offers
a few gigabytes
(e.g. 8,589,934,592 bytes)

(To scale with 64-bit address space,
you can't see it.)
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with many processes...




Problem 3: protection

Physical main memory
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Problem 4: sharing
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Solution: Virtual Memory (address indirection)
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Tangent: indirection everywhere

o Pointers

» Constants X

« Procedural abstraction \

« Domain Name Service (DNS) \\

« Dynamic Host Configuration Protocol (DHCP) \\h

e Phone numbers

- 911

« Call centers

 Snail mail forwarding

* .. “Any problem in computer science can be solved by adding another level of indirection.”

—David Wheeler, inventor of the subroutine, or Butler Lampson

Another Wheeler quote? "Compatibility means deliberately repeating other people's mistakes." =




Virtual addressing and address translation
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Where are they stored?

Cannot fit all virtual pages! Where are the rest stored?
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Virtual memory: cache for disk?

Not drawn to scale!
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Address translation
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Virtual memory benefits:
Simple address space allocation

Process needs private contiguous address space.
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Virtual memory benefits:
Protection:

All accesses go through translation.
Impossible to access physical memory not mapped in virtual address space.

Sharing:

Map virtual pages in separate address spaces to same physical page (Pr6).
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Virtual memory benefits:
Memory permissions

MMU checks on every access.
Exception if not allowed.
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Summary: virtual memory

Programmer’s view of virtual memory

Each process has its own private linear address space
Cannot be corrupted by other processes

System view of virtual memory

Uses memory efficiently (due to locality) by caching virtual
memory pages
Simplifies memory management and sharing
Simplifies protection -- easy to interpose and check permissions
More goodies:

«  Memory-mapped files

» Cheap fork () with copy-on-write pages (COW)
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