About how many hours did you spend actively working on this assignment?

Q1 vAl	_Ue Jud	laement	[22	points

Draw circuits on next page, text answers here.

1.1 Condition Flags [5 points]

(draw circuits on next page)

1.2. (a) [3 points] A, B with correct result

Α	В	A - B	sign(A-B)	Is A < B?
positive	positive			no
negative	negative			yes
different signs	different signs			

1.2. (b) [2 points] A, B with incorrect result

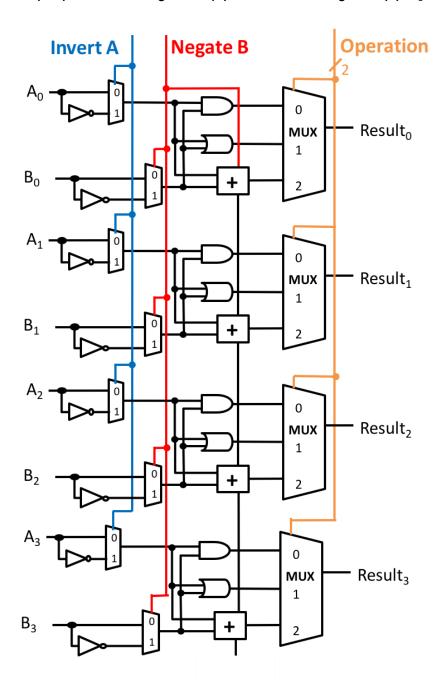
Α	В	A - B	sign(A-B)	Is A < B?
				no
positive				
				yes
negative				

1.2. (c) [1 point] Key effect

- **1.2.** (d) [5 points] Draw your circuit for the Less-Than on the next page.
- 1.2. (e) [1 points] Control lines for Less-Than

Invert A = Negate B = Operation =

- **1.3.** (a) [4 points] Draw your Equals Flag design on the next page.
- 1.3. (b) [1 points] Control lines for Equals


Invert A = Negate B = Operation =

Q2.	Flop-flip	-flopping	[10 points]
-----	-----------	-----------	-------------

QZ. 1 lop-inp-nopping [10 points]					
Q_2	\mathbf{Q}_1	Qo			
0	0	0			
	Q_2	Q_2 Q_1			

Q2.2 Explanation (You need not fill this entire space.)

1.1. (a-d) Condition Flags, 1.2. (d) Less-Than Flag, 1.3. (a) Equals Flag. Label outputs clearly.

Q3 Some Loopy Programs [14 points]

3.1 [8 points] Execution Table for P1

PC	Instruction		State Changes				
	!						
	<u> </u>						
	<u> </u>						
	<u> </u>						
	!						
3.2 [3 p	3.2 [3 points] Final contents, P1 R2: R3: R4:						
3.3 [3 points] C statements equivalent to P1:							
	<pre>int R0 = 0; int R1 = 1;</pre>						
int R2	int R2 = R0+R1;						

3.4 (a) [3 points] Result of P2

Execute this code, assuming R2 holds 2 and R3 holds 3. Indicate the final register values when the code reaches HALT.

0x0: AND R2, R2, R4 0x2: AND R3, R3, R5 0x4: BEQ R5, R0, 3 0x6: SUB R5, R1, R5 0x8: ADD R4, R4, R4

0xA: **JMP 2**

0xC: HALT # Stops execution.

R2: R3: R4: R5:

3.4 (b) [2 points] C line for P2

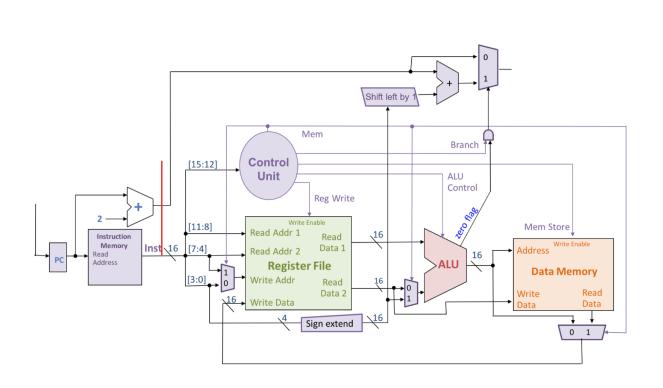
Single line of C code equivalent to P2. Use only basic C operations (no function calls).

R4 =

Q4 Taking Control [8 points]

Control Unit Truth Table

Instruction Name	Opcode _[3:0] (4 bits)	Reg Write (1 bit)	ALU Op _[3:0] (4 bits)	Mem Store (1 bit)	Mem (1 bit)	Branch (1 bit)	Jump (Q6.2 [1pt]) (1 bit)
LW	0000	1	0010	0	1	0	0
SW							
ADD							
SUB							
AND							
OR							
BEQ							
NAND (Q5.2 [3 pts])							
JMP (Q6.3 [1 pt])							


Q5 Instruction Not Missing [8 points]

Fill in, following the format of slide 14 of the A Simple Processor lecture notes.

		16-bit encoding			
Assembly	Meaning	Opcode [15:12]	Rs [11:8]	Rt [7:4]	Rd [3:0]
5.1 [3 points] NAND Rs,Rt,Rd	R[d] ← ~(Rs & Rt)				
5.3 [2 points] NOT Rs,Rd	R[d] ← ~Rs				

Q6 Jumping into the Unknown [8 points]

6.1 [6 points]. Below, add a Jump output wire from the Control Unit and modify logic to use it to implement JMP instruction. Note: if you use the new red write split off from Inst, be sure to label which range ([?, ?]) of bits you use.

