Exam 2 topics

Lectures
Programming with Memory
X386 Basics
x86 Control Flow
x86 Procedures, Call Stack
Representing Data Structures
Buffer Overflows

Processes Model
Shells

Labs
Pointers in C
X86 Assembly
x86 Stack
Data structures in memory
Buffer overflows
Processes

Topics
C programming: pointers, dereferencing, arrays,
structs, cursor-style programming, using malloc
x86: instruction set architecture, machine code,
assembly language, reading/writing x86, basic
program translation
Procedures and the call stack, data layout,
security implications
Processes, shell, fork, wait

Assignments

Pointers Exam 2: ISA + Process/Shell
X386 December 5

Buffer (Thursday after break)
Concurrency

WELLESLEY

A\ 4

CS 240
Foundations of Computer Systems

Practice problems

https://cs.wellesley.edu/~cs240/

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

Fun attendance question: what is something you ate or did over break that brought you
joy?

Nobody has responded yet.

Hang tight! Responses are coming in.

B Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

Struct practice problem

struct s { 1. Draw a picture of how this struct is laid out in memory, labeling the
char *aj byte offset of each field (starting with a at offset +0);
short b;
int *c;
char d;
int e; 2. Modify your picture to show how much space a single element of this
s char f; struct would take if used as an element of an array (e.g., the total size).

Recall: a short is 3. Rearrange the fields of the struct to minimize wasted space. Draw the
2 bytes in C new offsets and the total size.

Struct practice problem

struct s { 1. Draw a picture of how this struct is laid out in memory, labeling the
char *aj byte offset of each field (starting with a at offset +0);
short b;
char d: +0 +8 +10 +16 +24,425 +28 432,433 +40
int e; 2. Modify your picture to show how much space a single element of this
} char f; struct would take if used as an element of an array (e.g., the total size).

Recall: a short is
2 bytes in C

Struct practice problem

struct s { 1. Draw a picture of how this struct is laid out in memory, labeling the
char *aj byte offset of each field (starting with a at offset +0);
short b;
char d: +0 +8 +10 +16 +24,425 +28 432,433 +40
int e; 2. Modify your picture to show how much space a single element of this
} char f; struct would take if used as an element of an array (e.g., the total size).

Recall: a short is 3. Rearrange the fields of the struct to minimize wasted space. Draw the
2 bytes in C new offsets and the total size.
‘ a C e b |elt

+0 +8 +16 +20 +24

Fun attendance question: what snacks/drinks would you like for the last CS240 class next

70
Monday? .

Nobody has responded yet.

Hang tight! Responses are coming in.

B Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

2-D array practice problem

long al[2]1[3]; 1. Draw a picture of how this array is laid out in memory, labeling the

indices and byte offset of each element (starting witha[0] [O] at
offset +0);

Recall: index = C*r + c
scale by element size

long get elem 1 2(long afl2][3]) {
return al[l]l[2];

2. Write x86 assembly code to
implement this function.

J

2-D array practice problem: solution

long al2][3];

1. Draw a picture of how this array is laid out in memory, labeling the

indices and byte offset of each element (starting witha[0] [O] at

offset +0);

Recall: index = C*r + c
a[0][0]]a[0]1[1]ja[0][2]fa[1][0]fa[1][1]fa[1][2] scale by element size
+0 +8 +16 +24 +32 +40

long get elem 1 2(long afl2][3]) {

return a

11 [2]7

2. Write x86 assembly code to
implement this function.

Since we know the size, we can calculate

C*r+c=3*1+2 =5, 5*sizeof(lon

g) =5*8 =40

movg 40(%rdi),%rax
retqg

x86 struct/LinkedList practice problem

nodeFunc?2:

L3¢

Ll

L5

pushqg
pushqg

subqg
movl

movslqg
testqg

je
movdq
movl
cmpl
jb
movdqg
movl
call
addq
popd
popq
ret
movl
Jmp

Srbp

3rbx

S8, %rsp
3%esl, %ebx
%esl, %rax
$rdi, %rdi
L1

$rdi, %rbp
8(%rdi), %esi
%esl, %ebx
.L5

0(%rbp), %rdi
%ebx, %esl
nodeFunc?2

S8, %rsp

3rbx

Srbp

%esl, %ebx
.L3

typedef struct Node {
struct Node* next;
unsigned int value;
} Node;

long nodeFunc?2 (Node* node, unsigned int Xx) {
[/ 2272
}

long nodeFuncl (Node* node) {
nodeFunc2 (node, 0);

}

Consider the above function that calculates something useful about a linked list of
unsigned integers using a helper function.

1. Identify which pieces of x86 refer to next and value.

2. ldentify the base case of the recursive function nodeFunc2. Whatis returned in
this case?

3. ldentify the recursive case of nodeFunc2. What is the argument passed to the
recursive call?

4. What is nodeFunc1 calculating with helper nodeFunc?2?

10

x86 struct/LinkedList practice problem

typedef struct Node ({
struct Node* next;
unsigned int value;

} Node;

nodeFunc?2:
pushqg Srbp
At call, srsp |_]pushq 3rbx
S

must be a ubg $8, 3rsp

multiple of 16 movl tesl, %ebx
movslg %esi, %rax
testqg $rdi, %Srdije
je L1
movg 3rdi, %rbp
mov 1l 8(%rdi), %esi
cmpl 2esi, %ebx
jb .L5

.L3: movq O0(%rbp), %rdi

movl %ebx, %esl

nodeFunc?2

.Ll: addq S8, %rsp
popq Srbx
popdg srbp
ret

.L5: movl %esl, %ebx
jmp L3

}

}

}

1y 1f (node
return max;

max

2nd argument renamed for clarity
long nodeFunc?2 (Node* node, unsigned int max) {

{ node = 3rdi

base case

nodeFunc2 (node, 0);

if (node->value > max) { hoteorder of x86 comparison
node->value;

nodeFunc?2 (node->next, max);
 recursive case

long nodeFuncl (Node* node) {

8 (srdi)

accesses node->value,

$rdi accesses node, the pointer itself

if (node->value > x),

jumpto .L5,

(%$rdi)

sets

accesses node->next,

sebx to node->value

Sebx calculates the max of node->value and x

in the base case, returns second arg, x (the maximum value found so far)

nodeFuncl uses its helper to find the maximum value within a linked list.

11

X86 recursive procedure practice problem

4011
4011
4011
4011
40111
40111
40111
40111
40111
40111
4011
4011

mystery:

-0x0, seax 1. What register is being saved to the stack? Why?

06 mov
Ob test
0d Jne
ret
push
mov

sub
call

O
D O o W O H

add
21 pop
22 ret

sedi, sed1l
401110 <mystery+0xa>

2. What instruction address gets saved to the stack? Why?

srbx
zes1l, sebx

$0x1,Sedi 3. What is this function computing?

401106 <mystery>

movslg %Sebx, srsi

$rsi, srax

5 Ox7f£df28
TTrbox

4. Fill in the top of this stack after the
function returns to main for

mysterv (2, 95).

What is each value returned, in
order?

<ret address
in main>

main

mystery (2,

>)

X86 recursive procedure practice problem

mystery:
401106 mov -0x0, seax 1. What register is being saved to the stack? Why?
10110b test sedi, sedl %rbx, so thatitis not overwritten in the recursive call
40110d Jne 401110 <mystery+0xa> 7 27
40110f ret 2. What instruction address gets saved to the stack? Why?
401110 push Srbx 0x40111b, return address after recursive call
401111 mov zes1, sebx
, L . N
101113 sub 50x1, Sedi 3. What is this function computing:
401116 call 401106 <mystery> Multiplies its two arguments
40111b movslg %ebx, Srsi
117 o yrqi o <ret address '
4Off"e add rsi, srax 0x7 £d£28 . . maln
401121 pop Srbox 1n malin>
401122 ret

0x7fdf20| unknown rbx

O0x7fdf18 0x40111b

int mult(int x, int y) {

1f (x == 0) return 0; 0x71dr20 2

return y + mult(x - 1, y); 0x7fdf18 0x40111b

}

srax: 0

|
|
|

mystery (2, 5)

Srax: 10

mystery(l, 5)
srax: DO

mystery (0, 5)

srax: 0
13

Xx86 short answer practice problems

1. Which x86 instructions implicitly change the stack pointer? How do they change it?

2. What are some things defined by the word size? What is the word size we have been using for x86
in class?

3. Describe the general idea of a buffer overflow exploit in C code compiled to x86.

4. Describe how a child process’s memory is related to the memory of the parent process.

Xx86 short answer practice problems

1. Which x86 instructions implicitly change the stack pointer? How do they change it?

pushg popqg call ret
Srsp —= 38 Srsp += 38 Srsp —= 3 Srsp += 38

2. What are some things defined by the word size? What is the word size we have been using for x86

in class? Register size, address size, pointer size
NOT instruction size (variable-width instruction size)

3. Describe the general idea of a buffer overflow exploit in C code compiled to x86.

Buffer overflow occurs when code lacks bounds checking in writing untrusted input to a
destination region of memory that is too small. Buffer overflow attacks can overwrite the return
addresses on the stack to point to further exploit code.

4. Describe how a child process’s memory is related to the memory of the parent process.

The child process starts with a copy of the state of the parent’s memory. It is a private copy:
the child and the parent do not share memory once the child is created.

15

Xx86 arithmetic practice problem

long funmathO (long x,

J

return x + 4*y + 21;

long y)

long funmathl (long x,

J

return 2*x + 4*y + 21;

Llong y) |

long funmath2 (long x,

J

return 6*x + 5*y + 21;

long y)

Implement the above functions in x86 without addg ormulg.
You can use 1leaqg and any other x86 instruction.

Recall: addressing modes can only multiply by 1, 2, 4, or 8.

Xx86 arithmetic practice problem

long funmathO (long x, long vy)
return x + 4*y + 21;

J

{

long funmathl (long x, long vy)
return 2*x + 4*y + 21;

J

{

long funmathZ (long x, long V)
return 6*x + 5*y + 21;

J

{

Implement the above functions in x86 without addg ormulg.

3 possible answers:

funmathO:
leaq 21(%rdi,%rs1i,4), %rax
ret

funmathl:
leaq (%rdi,%rsi,2), %rax
leaq 21 (%rax,%rax), %rax
ret

funmath?2:
leaq (%rdi,%rdi,2), %rdx
leaq (%rsi,%rsi,4), %rax
leaq 21(3rax,3rdx,2), %rax
ret

You can use 1leaqg and any other x86 instruction.

Recall: addressing modes can only multiply by 1, 2, 4, or 8.

17

