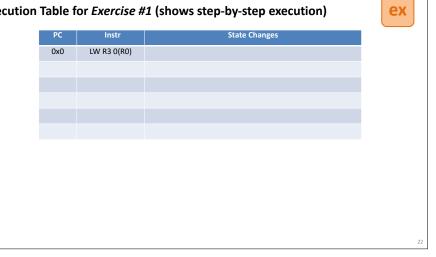
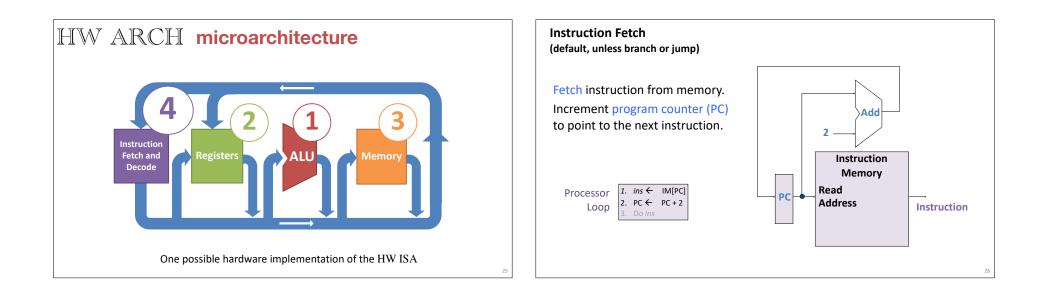
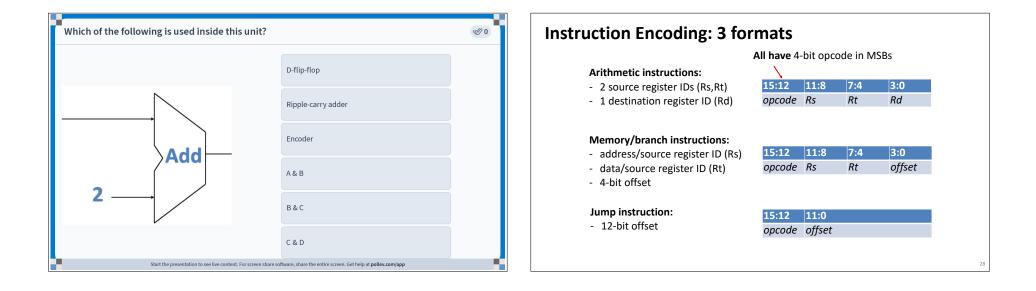

HW ISA M: Data Memory	What is the full word stored at address 0x2?	c 🖉 0
ADSUS We'll think of the data memory like this:	0x2345	
Memory is byte-addressable, accesses full words (16 bits) Address Contents 0x0 - 0x1 0x01 0x00 Memory is "Little Endian": the "little" (low) byte is stored 0x2 - 0x3 0x2	Address Contents 0x0 - 0x1 0x01 0x00 0x2 - 0x3 0x23 0x45 0x4 - 0x5 0x67 0xab	
at the lower address.	0x6 - 0x7 0x2300 0x8 - 0x9 0x2300 0xA - 0xB 0x2300	
Example: storing 1 at address 0x0 yields	0xC - 0xD 0x0023	
11	0x2367 Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollex.com/app	

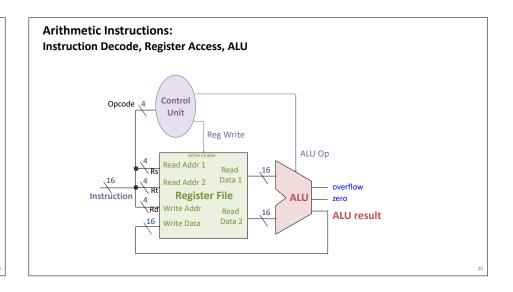
HW 2	ISA Instru	uctions	_{MSB} 16	5-bit E	ncodi	ng _{LSB}	
	Assembly Syntax	(R = register file, Meaning M = data memory)	Opcode	Rs	Rt	Rd	
	ADD Rs, Rt, Rd	$R[d] \leftarrow R[s] + R[t]$	0010	5	t	d	
	SUB Rs, Rt, Rd	$R[d] \leftarrow R[s] - R[t]$	0011	5	t	d	- Arithmetic
	AND Rs, Rt, Rd	$R[d] \leftarrow R[s] \& R[t]$	0100	5	t	d	Antimetic
	OR Rs, Rt, Rd	$R[d] \leftarrow R[s] \mid R[t]$	0101	5	t	d	
	LW R <i>t, offset</i> (Rs)	$R[t] \leftarrow M[R[s] + offset]$	0000	5	t	offset	Memory
	SW Rt, offset(Rs)	$M[R[s] + offset] \leftarrow R[t]$	0001	5	t	offset	- Memory
	BEQ Rs, Rt, offset	If $R[s] == R[t]$ then PC \leftarrow PC + 2 + offset*2	0111	5	t	offset	Control flov
MP offset is unsigned	JMP offset	PC ← offset*2	1000		offse	t	
other offsets are <i>signed</i>	HALT	Stops program execution	1111				-

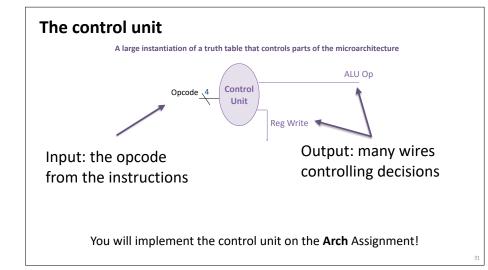


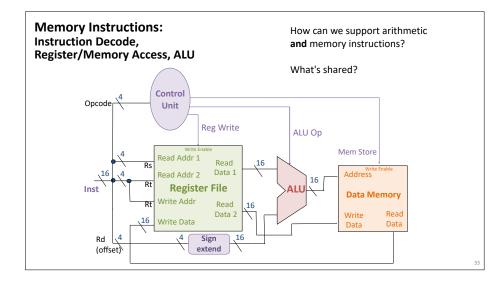
What is the next operation this processor will do	?	Ø0 8	Exercise 0	Address	Memory Contents			egister File Contents
	ADD	Fill i mac	N ISA n the rest of the thine state based on initial state	0x0 - 0x1 0x2 - 0x3 0x4 - 0x5 0x6 - 0x7 0x8 - 0x9 0xA - 0xB 0xC - 0xD		0x00 0x01	R0 R1 R2 R3 R4 R5	0x0000 0x0001
Program Counter PC 0.2 Adfress 0x2-0x1 Contents 0x2-0x1 SUB SUB Processor Loop 1. im < Mil(ret) 3. bo im 0x2-0x1 0x8.78, 18, 18 0x2-0x1 0x2-0x	SUB		Program Counter	 IM: Inst	ruction Memo	ry	R6 R7 R8	
	OR			Address 0x0 - 0x1 0x2 - 0x3	Contents ADD R1, R1, R2 SW R2, 4(R0)		R9 R10 R11	
	None of the above	<i>1.</i> 2.	becessor Loop ins \leftarrow IM[PC] PC \leftarrow PC + 2 Do ins	0x4 - 0x5 0x6 - 0x7 0x8 - 0x9 			R12 R13 R14 R15	
Start the presentation to see live content. For screen share	software, share the entire screen. Get help at pollev.com/app							

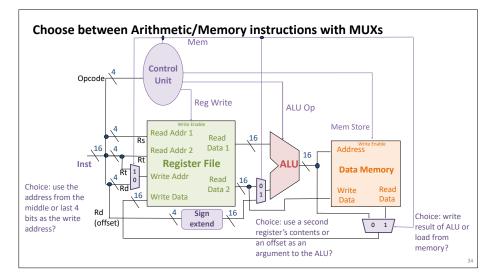

× Exercise 1	Address	Memory Contents		Reg	Contents
<pre>LYELCISE T</pre>	0x0 - 0x1		0x00	RO	0x0000
	0x0 - 0x1 0x2 - 0x3		0x01		
N ISA	$0x^2 = 0x^3$ $0x^4 - 0x^5$	0,04	0,01	R1	0x0001
V IOLI				R2	
	0x6 – 0x7			R3	
n the rest of the	0x8 – 0x9			R4	
chine state based on	0xA – 0xB				
initial state	0xC – 0xD			R5	
Initial State				R6	
		1		R7	
Program Counter	IM: Inst	ruction Mem	ory	R8	
	Address	Contents		R9	
	0x0-0x1	LW R3, 0(R0)		R10	
	0x2 – 0x3	LW R4, 2(R0)		R11	
cessor Loop	0x4 – 0x5	AND R3, R4, R5			
ins ← IM[PC]	0x6 – 0x7	SW R5, 4(R0)		R12	
$PC \leftarrow PC + 2$	0x8 – 0x9	HALT		R13	
Do ins				R14	
	-	1		R15	-

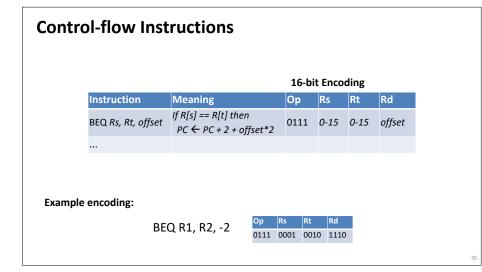

Execution Table for *Exercise #1* (shows step-by-step execution)

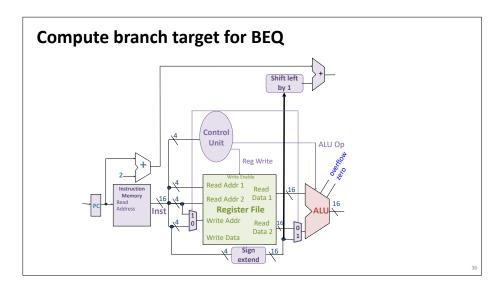

	M: Data	Memor	Ņ	R: R	egister File	
ex Exercise 2	Address	Contents		Reg	Contents (time: \rightarrow)	
	0x0 - 0x1	0x0F	0x00	RO	0x0000	
	0x2 – 0x3	0x04	0x01	R1	0x0001	
HW ISA	0x4 – 0x5				0,0001	
	0x6 – 0x7			R2		
	0x8 – 0x9			R3		
Fill in the rest of the	0xA – 0xB			R4		
machine state based on	0xC – 0xD			R5		
this initial state				R6		
				R7		
PC: Program Counter	IM: Inst	ruction	Memory	R8		
	Address	Contents		R9	0x0002	
	0x0-0x1	SUB R8, R	18, R8	R10	0x0003	
	0x2 – 0x3	BEQ R9, F	10, 3		0,0003	
Processor Loop	0x4 – 0x5	ADD R10,	R8, R8	R11		
1. ins ← IM[PC]	0x6 – 0x7	SUB R9, R	1, R9	R12		
2. PC ← PC + 2	0x8 – 0x9	JMP 1		R13		
3. Do ins	0xA – 0xB	HALT		R14		
				R15		

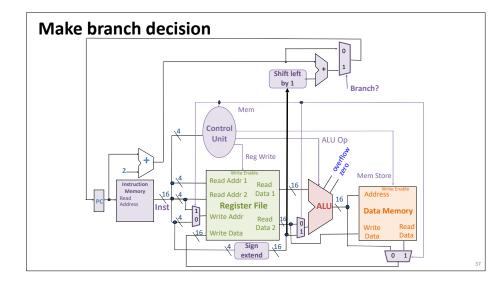

cution	Table	for Exercise	#2 (shows step-by-step execution)	ех
	РС	Instr	State Changes	
Ĩ	0x0	SUB R8, R8, R8		




		16-bi	t Encod	ling	
Instruction	Meaning	Opcode	Rs	Rt	Rd
ADD Rs, Rt, Rd	$R[d] \leftarrow R[s] + R[t]$	0010	0-15	0-15	0-15
SUB <i>Rs, Rt, Rd</i>	$R[d] \leftarrow R[s] - R[t]$	0011	0-15	0-15	0-15
AND <i>Rs, Rt, Rd</i>	$R[d] \leftarrow R[s] \& R[t]$	0100	0-15	0-15	0-15
OR <i>Rs, Rt, Rd</i>	$Rd \leftarrow R[s] \mid R[t]$	0101	0-15	0-15	0-15
e encoding: ADD F	R3, R6, R8 0pcode 0010	Rs Rt 0011 01	Rd 10 100	0	






Me	mory Instru	ctions					
	Instruction	Meaning	Ор	Rs	Rt	Rd	
	LW Rt, offset(Rs)	$R[t] \leftarrow Mem[R[s] + offset]$	0000	0-15	0-15	offset	
	SW Rt, offset(Rs)	$Mem[R[s] + offset] \leftarrow R[t]$	0001	0-15	0-15	offset	
Exai	mple encoding: SW	R6, -8(R3) Opcode Rs 0001 001	Rt	Rd			
		0001 001.	1 0110	1000			

What's missing from what we covered in lecture?

- Details of Control Unit
- ALU op is not instruction opcode; some translation needed
- Reg Write bit (for ADD, SUB, AND, OR, LW)
- Mem Store bit (for SW)
- Mem bit (arithmetic/memory MUX bit)
- Branch bit (for BEQ)
- Implementation of JMP
- Implementation of HALT (basically stops the clock running the computer; we won't implement this)

See Arch Assignment!

$HW \ ARCH$ not the only implementation

Single-cycle architecture

- Relatively simple, (barely!) fits on a slide (and in our heads).
- Every instruction takes one clock cycle each.
- Slowest instruction determines minimum clock cycle.
- Inefficient.

Could it be better?

- Performance, energy, debugging, security, reconfigurability, ...
- Pipelining
- OoO: Out-of-order execution
- Caching
- ... enormous, interesting design space of Computer Architecture

Conclusion of unit: Computational Building Blocks (HW)

Lectures

Digital Logic Data as Bits Integer Representation Combinational Logic Arithmetic Logic Sequential Logic A Simple Processor

Labs

- 1: Transistors to Gates 2: Data as Bits
- 3: Combinational Logic & Arithmetic 4: ALU & Sequential Logic
- 5: Processor Datapath (next week)

Topics

Transistors, digital logic gates Data representation with bits, bit-level computation Number representations, arithmetic Combinational and arithmetic logic Sequential (stateful) logic Computer processor architecture overview

Assignments

Gates

Zero

Bits

Mid-semester exam 1: HW October 10

Arch (out now!)