
CS 251 Fall 2019
Principles of Programming Languages
Ben WoodλCS 240

Foundations of Computer Systems

https://cs.wellesley.edu/~cs240/

A Simple Processor

1

with Abstract Machine Execution Exercise Solutions
1. A simple Instruction Set Architecture
2. A simple microarchitecture (implementation):

Data Path and Control Logic

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

M: Data Memory R: Register File

IM: Instruction Memory
Address Contents
0x0 – 0x1 LW R3, 0(R0)
0x2 – 0x3 LW R4, 2(R0)
0x4 – 0x5 AND R3, R4, R5
0x6 – 0x7 SW R5, 4(R0)
0x8 – 0x9 HALT
…

PC: Program Counter

Address Contents
0x0 – 0x1 0x0F 0x00
0x2 – 0x3 0x04 0x01
0x4 – 0x5 0x04 0x00
0x6 – 0x7
0x8 – 0x9
0xA – 0xB
0xC – 0xD
…

1. ins IM[PC]
2. PC PC + 2
3. Do ins

Processor Loop

2

HW ISA Reg Contents

R0 0x0000

R1 0x0001

R2

R3 0x000F

R4 0x0104

R5 0x0004

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

Exercise #1:
Fill in the rest of the
machine state based on
this initial state

ex

3

PC Instr State Changes

0x0 LW R3 0(R0) R[3] M[R[0] + 0]] = M[0] = 0x000F; PC PC+2 = 0+2 = 2

0x2 LW R4, 2(R0) R[4] M[R[0] + 2]] = M[2] = 0x0104; PC PC+2 = 2+2 = 4

0x4 AND R3, R4, R5 R[5] R[3] & R[4] = 0x0004 ; PC PC+2 = 4+2 = 6

0x6 SW R5, 4(R0) M[R[0] + 4] = M[4] R[5] = 0x0004; PC PC+2 = 6+2 = 8

0x8 HALT Program execution stops

The bytes are swapped from the memory M picture on
the previous page because the bytes are stored in Little
Endian order.

E.g., for the byte pair 0x00 at address 0x0 and 0x0F
at address 0x1, the byte at the lower address 0x0 is
stored at the “little end” (LSB) of the 2-byte word. As
we’ll soon see, this is consistent with the byte
ordering in the C programming language.

Execution Table for Exercise #1 (shows step-by-step execution)
Solutions ex

M: Data Memory R: Register File

IM: Instruction Memory
Address Contents
0x0 – 0x1 SUB R8, R8, R8
0x2 – 0x3 BEQ R9, R0, 3
0x4 – 0x5 ADD R10, R8, R8
0x6 – 0x7 SUB R9, R1, R9
0x8 – 0x9 JMP 1
0xA – 0xB HALT
…

PC: Program Counter

Address Contents
0x0 – 0x1 0x0F 0x00
0x2 – 0x3 0x04 0x01
0x4 – 0x5
0x6 – 0x7
0x8 – 0x9
0xA – 0xB
0xC – 0xD
…

1. ins IM[PC]
2. PC PC + 2
3. Do ins

Processor Loop

4

Reg Contents (time:)

R0 0x0000

R1 0x0001

R2

R3

R4

R5

R6

R7

R8 0x???? 0x0000 0x0003 0x0006

R9 0x0002 0x0001 0x0000

R10 0x0003

R11

R12

R13

R14

R15

→

→ →
→ →

→
1 2

3

4

5

HW ISA
Solutions

ex Exercise 2

What is this code doing at
a high level?

Multiplies the contents of
R9 and R10!

5

PC Instr State Changes

0x0 SUB R8, R8, R8 R[8] R[8] – R[8] = 0; PC PC+2 = 0+2 = 2

0x2 BEQ R9, R0, 3 PC PC+2 = 2+2 = 4 (because 2 = R[9] ≠ R[0] = 0)

0x4 ADD R10, R8, R8 R[8] R[10] + R[8] = 3 + 0 = 3; PC PC+2 = 4+2 = 6

0x6 SUB R9, R1, R9 R[9] R[9] - R[1] = 2 – 1 = 1; PC PC+2 = 6+2 = 8

0x8 JMP 1 PC 2*1 = 2

0x2 BEQ R9, R0, 3 PC PC+2 = 2+2 = 4 (because 1 = R[9] ≠ R[0] = 0)

0x4 ADD R10, R8, R8 R[8] R[10] + R[8] = 3 + 3 = 6; PC PC+2 = 4+2 = 6

0x6 SUB R9, R1, R9 R[9] R[9] - R[1] = 1 – 1 = 0; PC PC+2 = 6+2 = 8

0x8 JMP 1 PC 2*1 = 2

0x2 BEQ R9, R0, 3 PC PC+2+(2*3) = 4+6 =10 (because 0 = R[9] = R[0] = 0)

0xA HALT Program execution stops

Execution Table for Exercise #2 (shows step-by-step execution)
Solutions

ex

