WELLESLEY
CS 240

Foundations of Computer Systems

Arithmetic Logic

adders
Arithmetic Logic Unit

https://cs.wellesley.edu/~cs240/ 1

Motivation: how do we go from code to gates?

AND

=

int count_odds(int array[10]) {
int count = 0;
for (int i = 0; i < 10; i++) {
count += array[i] & Oxl;

}
return count;
}
ADD
2?27

Processor Components

Instruction
Fetch and
Decode

Registers

Addition: 1-bit half adder

A
= Sum
B

Car‘ry out
Carry
A|B out Sum
A— 2 L Sum 0|0 0 0
B— : o|l1] o 1
1|0 0 1
1|11 1 0
Carry out

Hint: the smallest solution uses 2 gates from: AND, OR, XOR, NOT, NAND, NOR

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

]
||
Which two gates match "Carry Out" and "Sum", respectively? 20 Addition: 1-bit half adder
A
= Sum
A AND; NAND B :n
= Sum 0%]
B Carry out
A4 AND; XOR
Carry out 2 Car
0% AlB |2 sum
Carry Out
OR; NOR
A|B Sum ’ 9 A— ojo| O 0
Out 0% —Sum
olo 0 0 OR; NAND B— 01 0 1
0%
1|0 0 1
0 1 0 1 None of the above
0% 1|1 1 0
1|0 0 1 Carry out
1 [1 1 0
Hint: the smallest solution uses 2 gates from: AND, OR, XOR, NOT, NAND, NOR
.. Start the presentation to see live content. For screen sh: ft hare the il reen. Get help at ..

Carry in
Addition: 1-bit full adder . Addition: n-bit ripple-carry adder '
B:n-. Carry‘ln0
Car‘ryout Ao:n
B = Sum,
Carry in C?"'V alel Y| sum Carry in 0 1
in Out A
o |[o]|o| o 0 Bl:n.. Sum,
1
0 01 0 1
A —Sum A -Sum A !
B | 0 [1]0]| o© 1 B] 2'_'“-. Sum,
B
0o 11| 1 0 e 1
1 |ojo| o 1 S
1 0|1 1 0 A l
1 1]0 1 0 T) Bm:n" Sump
Carry out 1 1111 1 1 Carry out C‘arryoutn,l
7 There are faster, more complicated ways too...

Arithmetic Logic Unit (ALU)

1-bit ALU for bitwise operations

We will use n 1-bit ALUs to build an n-bit ALU.
Each bit j in the result is computed from the corresponding bit i in the two inputs.

a few bits —s Operation Oop | A B |Result
An example (simplified) 1-bit ALU
l Operation 0 0 0
Operand A =) word 0 0 1
words =) Result A4 . 0 0 ! 0
Operand B m) E Result 0 1 !
l = 1]0/ o0
; 1
Condition Codes , —— 0 /few bits B4 1 0 1
(sign, overflow, carry-out, zero) 1 1 0
. 1 1 1
Hardware unit for arithmetic and bitwise operations.
Carry in
1-bit ALU: 3 operations Ysed as selector, chooses n-bit ripple carry adder A o - Use the same selector
. which function to perform) MUX |- Resulty for every 1-bit ALU
Operation Carry in 1
Carryin 2 3]SU"‘
It \4'/\ Po S % u 2/
A = UMy
_‘tD 0 (00) Bo A, "~
4 Mux > Result;
MUX [5 Result Ay 1
5 = Sum; 3 sum
"ﬁ;_/;\ 1 (1) < B, 2 |
A
Sum = Sum; n-bit ALU
B + 2 (10) B, :n :
/ ‘
l ¥ Ana 0
(11 is not used in this example ALU!) A, MUX Result,.
Carry out 1 :n. sum,., 1 1
B, Sum
TR B +)2
1n Carry out

Carry out 12

Controlling the ALU

Carry in

Ao

IVEI’U > Result,
Doy,

Include subtraction

Carry in

0
MUX[-> Resulty
1

Bo How can we control ALU inputs 2
A or add minimal new logic 5
ALU control lines m > Result, to also compute A-B? MUX—> Result;
1
AND B, 2
OR Recall:
A-B=A+ (-B) :
dd :
@ = A+ (-B + 1)
Result, ; Plan: Result, ;
Feed bitwise-not B into the adder
Add an extra 1: how?
Carry out Carry out
Negate B Negate B
Include subtraction . N Include subtraction N Cany
0 0 0 0
MUx[—> Result, MUX[—> Resulty
Plan to compute A-B: —> 1
1. Feed bitwise-not B into the adder Bo o + | Bo ° +
runfi 2 > 2
2. Add an extra 1 > — [> —
Ay o ALU control lines m Ay o
Key insight: Mux > Result; Mux > Result;
y insig . 1 0 AND 1
The same selector bit (0 or 1) B, Y - B, ¥ +
can be used for both! l>‘ |2 0 OR I>‘ |2
. 0 add
1. Feed the selector into a new 2:1 : 1 subtract
mux to choose B or ~“B
. An—l 0 Anrl 0
2. Feed the selector in as the carry
. o X MUX Result,; MUX Result, ¢
in to the least significant bit 1 1
Bn1 R + 2 Bn1 0 + 2
Carry out Carry out 16

[
u S
COntrol | i ng the ALU &o“‘- How many different functions (operations) could this ALU theoretically perform?
a
Abs“
4
I Control Lines
ALU control lines
) 8
0000 AND Operand A m) ALU control ines Function Control Lines
0001 OR Result 0000 AND Gperand A wmp
0001 OR
0010 add = resd mo g 16
operand B ‘ 0110 subtract =
0110 subtract l o o
. 32
Condition Codes
None of the above
.. Start the presentation to see live content. For screen , sh reen. Get help at poll ..
Invert A Negate B
ALU conditions Carryin Ao ; T
1 > 0
Extra ALU outputs > Result, A NAND B Mlux - Result,
describing properties of result. B T
> 2
1 /
Zero Flag: ANORB [;
1if result is 00...0 else O M1U 4> Result, Alﬁ — o
--> Result
Sign Flag: A<B "2”" !
1 if result is negative else 0 B,
+ 2
= e
Carry Flag:
1if carry out else O
. How can we control ALU inputs or add
(Signed) Overflow Flag: Resulty minimal new logic to compute each? 0
1 if signed overflow else O MUX Result,

You will implement these in the Arch Assignment!

Carry out

You will implement some of these in the
Arch Assignment!

1

2

ALU control lines m

00
00
00
01
??
??
??
??

AND
OR
add
subtract
NAND
NOR
less than
equals

Invert A Negate B
A
e
Mux--> Resulty
1
B, 0
i - 2
o
MUux > Result;
1
By 0 +)
= e
Anq)
n >~ S
MUX Result, ;
a 1
Bni 0 + 2
1

Carry out

