
CS 251 Fall 2019

Principles of Programming Languages

Ben WoodλCS 240

Foundations of Computer Systems

https://cs.wellesley.edu/~cs240/

Arithmetic Logic
adders

Arithmetic Logic Unit

1

Motivation: how do we go from code to gates?

2

int count_odds(int array[10]) {
 int count = 0;
 for (int i = 0; i < 10; i++) {
 count += array[i] & 0x1;
 }
 return count;
}

AND

???

ADD

ALU

Processor Components

3

Registers Memory
Instruction
Fetch and
Decode

1 324

Abstraction! Addition: 1-bit half adder

4

A
B

Sum

Carry out

A B Carry
Out Sum

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

+A

B
Sum

Carry out

?

ex

Hint: the smallest solution uses 2 gates from: AND, OR, XOR, NOT, NAND, NOR

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

5

Addition: 1-bit half adder

6

A
B

Sum

Carry out

A B Carry
Out Sum

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

+A

B
Sum

Carry out

ex

Hint: the smallest solution uses 2 gates from: AND, OR, XOR, NOT, NAND, NOR

Addition: 1-bit full adder

7

Carry
in A B Carry

Out Sum

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

+A

B
Sum

Carry in

Carry out

A

Carry in

B
Sum

Carry out

Addition: n-bit ripple-carry adder

8

+A0

B0
Sum0

Carry in0

+An-1

Bn-1
Sumn-1

Carry outn-1

+A1

B1
Sum1

+A2

B2
Sum2

…

There are faster, more complicated ways too…

A

Carry in

B
Sum

Carry out

Arithmetic Logic Unit (ALU)

9
Hardware unit for arithmetic and bitwise operations.

Result

wordOperand A

Operand B

words

Condition Codes

(sign, overflow, carry-out, zero)

a few bits

Operationa few bits

1

ALU

1-bit ALU for bitwise operations

10

We will use n 1-bit ALUs to build an n-bit ALU.

Each bit i in the result is computed from the corresponding bit i in the two inputs.

M
U

X

A

B

0

1

Operation

Result

Op A B Result

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

exAn example (simplified) 1-bit ALU

1-bit ALU: 3 operations

11

A

B

0

1

Operation

Result

2

2Carry in

+ Sum

Carry out

MUX

(00)

(01)

(10)

(11 is not used in this example ALU!)

Used as selector, chooses

which function to perform

+A0

B0

Sum0

Carry in

+An-1

Bn-1

Sumn-1

Carry out

+A1

B1

Sum1

+A2

B2

Sum2

…

n-bit ripple carry adder

12

A0

B0

0

1
Result0

2

Carry in

+ Sum

MUX

An-1

Bn-1

0

1
Resultn-1

2+ Sum

Carry out

MUX

A1

B1

0

1
Result1

2+ Sum

MUX

Operation

…

2

n-bit ALU

Use the same selector
for every 1-bit ALU

Controlling the ALU

13

A0

B0

0

1
Result0

2

Carry in

+ Sum

MUX

An-1

Bn-1

0

1
Resultn-1

2+ Sum

Carry out

MUX

A1

B1

0

1
Result1

2+ Sum

MUX

Operation

…

2

ALU control lines Function

 00 AND
 01 OR

 10 add

Include subtraction

14

How can we control ALU inputs 
or add minimal new logic 
to also compute A-B?

A0

B0

0

1
Result0

2

Carry in

+ Sum

MUX

An-1

Bn-1

0

1
Resultn-1

2+ Sum

Carry out

MUX

A1

B1

0

1
Result1

2+ Sum

MUX

Operation

…

2

Recall:

A - B = A + (-B)
 = A + (~B + 1)  

Plan:

Feed bitwise-not B into the adder

Add an extra 1: how?  

Include subtraction

15

0

1
Result0

2+

MUX

0

1
Resultn-1

2+
Carry out

MUX

0

1
Result1

2+

MUX

Operation

…

B1 0

1

B0 0

1

Bn-1 0

1

....

2

A0

A1

An-1

Negate B

Plan to compute A-B:

1. Feed bitwise-not B into the adder

2. Add an extra 1 

1. Feed the selector into a new 2:1
mux to choose B or ~B

2. Feed the selector in as the carry
in to the least significant bit

 

Key insight:

The same selector bit (0 or 1)
can be used for both!

Include subtraction

16

0

1
Result0

2+

MUX

0

1
Resultn-1

2+
Carry out

MUX

0

1
Result1

2+

MUX

Operation

…

B1 0

1

B0 0

1

Bn-1 0

1

....

2

A0

A1

An-1

Negate B

ALU control lines Function

 00 AND
 01 OR

 10 add

 10 subtract

… …

 000 AND

 001 OR

 010 add

 110 subtract

… …

Controlling the ALU

17

ALU control lines Function

0000 AND
0001 OR
0010 add
0110 subtract

… …

Operand A

Operand B

Result

Control Lines

Condition Codes

Abstraction!

ALU

18

ALU conditions (additional outputs)
Extra ALU outputs  
describing properties of result.

Zero Flag: 
1 if result is 00...0 else 0

Sign Flag: 
1 if result is negative else 0

Carry Flag: 
1 if carry out else 0

(Signed) Overflow Flag: 
1 if signed overflow else 0

19

A0

B0

0

1
Result0

2

Carry in

+ Sum

MUX

An-1

Bn-1

0

1
Resultn-1

2+ Sum

Carry out

MUX

A1

B1

0

1
Result1

2+ Sum

MUX

Operation

…

2

You will implement these in the Arch Assignment!

A NAND B 
 
 
A NOR B 
 
 
A<B 
 
 
A==B 
 
 
How can we control ALU inputs or add

minimal new logic to compute each?

You will implement some of these in the 
Arch Assignment!

20

0

1
Result0

2+

MUX

0

1
Resultn-1

2+
Carry out

MUX

0

1
Result1

2+

MUX

Operation

…

A1 0

1

B1 0

1

A0 0

1

B0 0

1

Negate B

An-1 0

1

Bn-1 0

1

....

Invert A

....

2

21

0

1
Result0

2+

MUX

0

1
Resultn-1

2+
Carry out

MUX

0

1
Result1

2+

MUX

Operation

…

A1 0

1

B1 0

1

A0 0

1

B0 0

1

Negate B

An-1 0

1

Bn-1 0

1

....

Invert A

....

2

ALU control lines Function

0000 AND
0001 OR
0010 add
0110 subtract
???? NAND
???? NOR
???? less than
???? equals

