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Arithmetic Logic
adders


Arithmetic Logic Unit
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Motivation: how do we go from code to gates?
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int count_odds(int array[10]) {
    int count = 0;
    for (int i = 0; i < 10; i++) {
        count += array[i] & 0x1;
    }
    return count;
}
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Abstraction! Addition: 1-bit half adder
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Hint: the smallest solution uses 2 gates from: AND, OR, XOR, NOT, NAND, NOR
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Addition: 1-bit half adder

6

A
B

Sum

Carry out

A B Carry 
Out Sum

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

+A

B
Sum

Carry out

ex

Hint: the smallest solution uses 2 gates from: AND, OR, XOR, NOT, NAND, NOR

Addition: 1-bit full adder
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Addition: n-bit ripple-carry adder
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There are faster, more complicated ways too…

A

Carry in

B
Sum

Carry out



Arithmetic Logic Unit (ALU)
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Hardware unit for arithmetic and bitwise operations.
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words
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a few bits

Operationa few bits
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ALU

1-bit ALU for bitwise operations
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We will use n 1-bit ALUs to build an n-bit ALU.

Each bit i in the result is computed from the corresponding bit i in the two inputs.
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exAn example (simplified) 1-bit ALU

1-bit ALU: 3 operations
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n-bit ripple carry adder
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n-bit ALU

Use the same selector 
for every 1-bit ALU 



Controlling the ALU
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ALU control lines Function

  00 AND
  01 OR

  10 add

Include subtraction
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How can we control ALU inputs 
or add minimal new logic 
to also compute A-B?

A0

B0

0

1
Result0

2

Carry in

+ Sum

MUX

An-1

Bn-1

0

1
Resultn-1

2+ Sum

Carry out

MUX

A1

B1

0

1
Result1

2+ Sum

MUX

Operation

… ....

2

Recall: 

A - B = A + (-B)
      = A + (~B + 1)  
         
Plan:

Feed bitwise-not B into the adder

Add an extra 1: how?  
         

Include subtraction
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Plan to compute A-B:

1. Feed bitwise-not B into the adder

2. Add an extra 1 

         

1. Feed the selector into a new 2:1 
mux to choose B or ~B


2. Feed the selector in as the carry 
in to the least significant bit


 
         

Key insight: 

The same selector bit (0 or 1) 
can be used for both!

Include subtraction
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ALU control lines Function

  00 AND
  01 OR

  10 add

  10 subtract

… …

 000 AND

 001 OR

 010 add

 110 subtract

… …



Controlling the ALU
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ALU control lines Function

0000 AND
0001 OR
0010 add
0110 subtract

… …

Operand A

Operand B

Result

Control Lines

Condition Codes

Abstraction!

ALU
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ALU conditions (additional outputs)
Extra ALU outputs  
describing properties of result.


Zero Flag: 
1 if result is 00...0 else 0


Sign Flag: 
1 if result is negative else 0


Carry Flag: 
1 if carry out else 0


(Signed) Overflow Flag: 
1 if signed overflow else 0

19

A0

B0

0

1
Result0

2

Carry in

+ Sum

MUX

An-1

Bn-1

0

1
Resultn-1

2+ Sum

Carry out

MUX

A1

B1

0

1
Result1

2+ Sum

MUX

Operation

… ....

2

You will implement these in the Arch Assignment!

A NAND B 
 
 
A NOR B 
 
 
A<B 
 
 
A==B 
 
 
How can we control ALU inputs or add 

minimal new logic to compute each? 


You will implement some of these in the 
Arch Assignment!
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ALU control lines Function

0000 AND
0001 OR
0010 add
0110 subtract
???? NAND
???? NOR
???? less than
???? equals


