
CS 251 Fall 2019

Principles of Programming Languages

Ben WoodλCS 240

Foundations of Computer Systems

https://cs.wellesley.edu/~cs240/

A Simple Processor
1. A simple Instruction Set Architecture

2. A simple microarchitecture (implementation): 

Data Path and Control Logic

1 2

Ha
rd

w
ar

e
So

ft
w

ar
e

Motivation

C

16-bit 
register16 16

Registers (local data storage)

0
1
2+

0

0
1
2+… ...

ALU with Adder (compute)

RAM (larger/longer data storage)

for (int i = 0; i < 10; i++) {
 ...
}

int x = y * 2; int p = q & 0x0000FFFF;

How do we connect these?

A Simple Processor

Ha
rd

w
ar

e

Devices (transistors, etc.)

Solid-State Physics

Digital Logic

Microarchitecture

Instruction Set Architecture

Operating System

Programming Language

Compiler/Interpreter

Program, Application

So
ft

w
ar

e

3

connection

implementation

Computer

Instruction Set Architecture (ISA)

memory

Instruction

Logic

Registers

processor

Encoded

Instructions

Data

Instructions

• Names, Encodings

• Effects

• Arguments, Results

• Abstraction over ALUs

Local storage

• Names, Size

• How many Large storage

• Addresses, Locations

4

ISAs define the interface
between software and

hardware

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

Microarchitecture (Implementation of ISA)

ALURegisters Memory
Instruction
Fetch and
Decode

Computer

5

ISAs are an abstract
model of the underlying

hardware.

HW ISA
This week:

An example ISA and

hardware implementation
for CS240!

6

ISAs are an abstract
model of the underlying

hardware.

HW ISA
This week:

An example ISA and

hardware implementation
for CS240!

Basic building block of an ISA:

the instruction!

7

ALURegisters

Memory
Instruction
Fetch and
Decode

HW ISA
Word size = 16 bits (2 bytes)

• Register size = 16 bits
 • ALU computes on 16-bit values.

• Access 16 bits at once

• Byte-addressable (new

address every 8 bits)

• Number of registers = 16

• R0 always holds 0

• R1 always holds 1.

• Instructions are 16 bits in size

• Stored in separate memory

• Program counter (PC) register

holds address of next instruction

Summary (details to follow) R: Register File

8

HW ISA

Write?
0 = read

1 = write

Write data

r

w

Write port
Register address #3

Read ports

r

r Register address #1

Register address #2

Read data 1

Read data 2

w

w

9

R: Register File Reg Contents

R0 0x0000

R1 0x0001

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15
10

HW ISA

Write?
0 = read

1 = write

Write data

r

w

Write port
Register address #3

Read ports

r

r Register address #1

Register address #2

Read data 1

Read data 2

w

w

r = ?

w = ?

Word size = 16 bits, # registers = 16

ex

We’ll think of the
register file like this:

Abstraction!

R0 always holds
hardcoded 0

R1 always holds
hardcoded 1

R2 – R15: general purpose

(instructions can use them
to hold anything)

11

HW ISA

We’ll think of the data memory like this:

Abstraction!M: Data Memory

Address Contents
0x0 – 0x1
0x2 – 0x3
0x4 – 0x5
0x6 – 0x7
0x8 – 0x9
0xA – 0xB
0xC – 0xD
…

Memory is byte-addressable, accesses full words (16 bits)

Memory is “Little Endian”: the “little” (low) byte is stored
at the lower address.

Example: storing 1 at address 0x0 yields

0x01 0x00

12

13

HW ISA

We’ll think of the instruction memory
like this:

Abstraction!

IM: Instruction Memory

Instructions are 1 word in size.

Separate instruction memory.

Address Contents
0x0 – 0x1
0x2 – 0x3
0x4 – 0x5
0x6 – 0x7
0x8 – 0x9
…

1. ins  IM[PC]

2. PC  PC + 2

3. Do ins

Processor

Loop

Program Counter

PC

PC

Program Counter (PC) register

• holds address of next instruction to execute.

0x0

M: Data Memory R: Register File

IM: Instruction Memory
Address Contents
0x0 – 0x1
0x2 – 0x3
0x4 – 0x5
0x6 – 0x7
0x8 – 0x9
…

PC: Program Counter

Address Contents
0x0 – 0x1
0x2 – 0x3
0x4 – 0x5
0x6 – 0x7
0x8 – 0x9
0xA – 0xB
0xC – 0xD
…

1. ins  IM[PC]

2. PC  PC + 2

3. Do ins

Processor Loop

14

HW ISA Reg Contents

R0 0x0000

R1 0x0001

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

Abstraction!

Abstract Machine

Instructions

15

Assembly Syntax Meaning Opcode Rs Rt Rd

ADD Rs, Rt, Rd R[d]  R[s] + R[t] 0010 s t d

SUB Rs, Rt, Rd R[d]  R[s] - R[t] 0011 s t d

AND Rs, Rt, Rd R[d]  R[s] & R[t] 0100 s t d

OR Rs, Rt, Rd R[d]  R[s] | R[t] 0101 s t d

LW Rt, offset(Rs) R[t]  M[R[s] + offset] 0000 s t offset

SW Rt, offset(Rs) M[R[s] + offset]  R[t] 0001 s t offset

BEQ Rs, Rt, offset
If R[s] == R[t] then

 PC  PC + 2 + offset*2

0111 s t offset

JMP offset PC  offset*2 1000 offset

HALT Stops program execution 1111 	 	

(R = register file,  
 M = data memory)

16-bit Encoding LSBMSB
HW ISA

JMP offset is
unsigned

All other offsets

are signed

Arithmetic

Memory

Control flow

16

HW ISA

We’ll think of the instruction memory
like this:

Abstraction!

IM: Instruction Memory

Instructions are 1 word in size.

Separate instruction memory.

Address Contents
0x0 – 0x1 ADD R0, R1, R2
0x2 – 0x3 SUB R2, R1, R3
0x4 – 0x5 OR R3, R3, R4
0x6 – 0x7
0x8 – 0x9
…

1. ins  IM[PC]

2. PC  PC + 2

3. Do ins

Processor

Loop

Program Counter

PC

PC

Program Counter (PC) register

• holds address of next instruction to execute.

0x2

17

M: Data Memory R: Register File

IM: Instruction Memory
Address Contents
0x0 – 0x1 ADD R1, R1, R2
0x2 – 0x3 SW R2, 4(R0)
0x4 – 0x5 HALT
0x6 – 0x7
0x8 – 0x9
…

PC: Program Counter

Address Contents
0x0 – 0x1 0x0F 0x00
0x2 – 0x3 0x04 0x01
0x4 – 0x5
0x6 – 0x7
0x8 – 0x9
0xA – 0xB
0xC – 0xD
…

1. ins  IM[PC]

2. PC  PC + 2

3. Do ins

Processor Loop

18

HW ISA

Reg Contents

R0 0x0000

R1 0x0001

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

Fill in the rest of the
machine state based on
this initial state

ex Exercise 0

19

PC Instr State Changes

0x0 ADD R1, R1, R2 R[2]  R[1] & R[1] = 1 + 1 = 0x0002 ; PC  PC+2 = 0+2 = 2

0x2 SW R2, 4(R0) M[R[0] + 4] = M[4]  R[2] = 0x0002; PC  PC+2 = 6+2 = 8

0x4 HALT Program execution stops

Reminder: the two bytes will are
stored in Little Endian order when
we store them to memory M.

That is, the byte 0x02 will be stored
in the “little” end of the word—the
lower address of the pair of
addresses that store the word. 0x00
will be stored at the higher address.

Execution Table for Exercise #0 (shows step-by-step execution)

Solutions ex

HW ISA

M: Data Memory R: Register File

IM: Instruction Memory
Address Contents
0x0 – 0x1 ADD R1, R1, R2
0x2 – 0x3 SW R2, 4(R0)
0x4 – 0x5 HALT
0x6 – 0x7
0x8 – 0x9
…

PC: Program Counter

Address Contents
0x0 – 0x1 0x0F 0x00
0x2 – 0x3 0x04 0x01
0x4 – 0x5 0x02 0x00
0x6 – 0x7
0x8 – 0x9
0xA – 0xB
0xC – 0xD
…

1. ins  IM[PC]

2. PC  PC + 2

3. Do ins

Processor Loop

20

Reg Contents

R0 0x0000

R1 0x0001

R2 0x0002

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

Solutions
ex Exercise 0

M: Data Memory R: Register File

IM: Instruction Memory
Address Contents
0x0 – 0x1 LW R3, 0(R0)
0x2 – 0x3 LW R4, 2(R0)
0x4 – 0x5 AND R3, R4, R5
0x6 – 0x7 SW R5, 4(R0)
0x8 – 0x9 HALT
…

PC: Program Counter

Address Contents
0x0 – 0x1 0x0F 0x00
0x2 – 0x3 0x04 0x01
0x4 – 0x5
0x6 – 0x7
0x8 – 0x9
0xA – 0xB
0xC – 0xD
…

1. ins  IM[PC]

2. PC  PC + 2

3. Do ins

Processor Loop

21

Reg Contents

R0 0x0000

R1 0x0001

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

Fill in the rest of the
machine state based on
this initial state

HW ISA
ex Exercise 1 Execution Table for Exercise #1 (shows step-by-step execution)

22

PC Instr State Changes

0x0 LW R3 0(R0)

ex

M: Data Memory R: Register File

IM: Instruction Memory
Address Contents
0x0 – 0x1 SUB R8, R8, R8
0x2 – 0x3 BEQ R9, R0, 3
0x4 – 0x5 ADD R10, R8, R8
0x6 – 0x7 SUB R9, R1, R9
0x8 – 0x9 JMP 1
0xA – 0xB HALT
…

PC: Program Counter

Address Contents
0x0 – 0x1 0x0F 0x00
0x2 – 0x3 0x04 0x01
0x4 – 0x5
0x6 – 0x7
0x8 – 0x9
0xA – 0xB
0xC – 0xD
…

1. ins  IM[PC]

2. PC  PC + 2

3. Do ins

Processor Loop

23

Reg Contents (time:)

R0 0x0000

R1 0x0001

R2

R3

R4

R5

R6

R7

R8

R9 0x0002

R10 0x0003

R11

R12

R13

R14

R15

Fill in the rest of the
machine state based on
this initial state

→

HW ISA
ex Exercise 2

24

PC Instr State Changes

0x0 SUB R8, R8, R8

Execution Table for Exercise #2 (shows step-by-step execution) ex

ALU

microarchitecture

25

Registers Memory
Instruction
Fetch and
Decode

12 34

One possible hardware implementation of the HW ISA

HW ARCH Instruction Fetch  
(default, unless branch or jump)

Fetch instruction from memory.

Increment program counter (PC)
to point to the next instruction.

26

Read

Address Instruction

Instruction

Memory

Add

PC

2

1. ins  IM[PC]

2. PC  PC + 2

3. Do ins

Processor

Loop

27

Instruction Encoding: 3 formats

28

15:12 11:8 7:4 3:0
opcode Rs Rt Rd

Arithmetic instructions:

- 2 source register IDs (Rs,Rt)

- 1 destination register ID (Rd)

All have 4-bit opcode in MSBs

15:12 11:8 7:4 3:0
opcode Rs Rt offset

Memory/branch instructions:

- address/source register ID (Rs)

- data/source register ID (Rt)

- 4-bit offset

15:12 11:0
opcode offset

Jump instruction:

- 12-bit offset

Arithmetic Instructions

29

Instruction Meaning Opcode Rs Rt Rd

ADD Rs, Rt, Rd R[d]  R[s] + R[t] 0010 0-15 0-15 0-15

SUB Rs, Rt, Rd R[d]  R[s] – R[t] 0011 0-15 0-15 0-15

AND Rs, Rt, Rd R[d]  R[s] & R[t] 0100 0-15 0-15 0-15

OR Rs, Rt, Rd Rd  R[s] | R[t] 0101 0-15 0-15 0-15

...

16-bit Encoding

Opcode Rs Rt Rd
0010 0011 0110 1000ADD R3, R6, R8

Example encoding:

Arithmetic Instructions:  
Instruction Decode, Register Access, ALU

30

ALU
overflow
zero

ALU Op

Reg Write

Control

Unit

ALU result

16

16

4Opcode

Instruction

16

16

4

4

4

Rs

Rt

Rd

Write Data

Read Addr 1

Read Addr 2

Write Addr

Read

 Data 1

Read

 Data 2

Register File

Write Enable

The control unit

31

ALU Op

Reg Write

Control

Unit

4Opcode

A large instantiation of a truth table that controls parts of the microarchitecture

You will implement the control unit on the Arch Assignment!

Input: the opcode
from the instructions

Output: many wires
controlling decisions

Memory Instructions

32

Instruction Meaning Op Rs Rt Rd

LW Rt, offset(Rs) R[t]  Mem[R[s] + offset] 0000 0-15 0-15 offset

SW Rt, offset(Rs) Mem[R[s] + offset]  R[t] 0001 0-15 0-15 offset

...

SW R6, -8(R3) Opcode Rs Rt Rd
0001 0011 0110 1000

Example encoding:

33

Data Memory

Address

Write

Data

Read

Data

Mem Store

32

16
Inst

Write Data

Read Addr 1

Read Addr 2

Write Addr

Read

 Data 1

Read

 Data 2

ALU

ALU OpReg Write

Control

Unit

16

16

16

Register File
16

4

4

4

4

Sign
extend

164

How can we support arithmetic
and memory instructions?

What's shared?

Opcode

Rs

Rt

Rt

Rd

(offset)

Write Enable

Write Enable

Memory Instructions:  
Instruction Decode,  
Register/Memory Access, ALU

Choose between Arithmetic/Memory instructions with MUXs

34

Data Memory

Address

Write

Data

Read

Data

Mem Store

32

16
Inst

Write Data

Read Addr 1

Read Addr 2

Write Addr

Read

 Data 1

Read

 Data 2

ALU

ALU OpReg Write

Control

Unit

16

16

16

Register File
16

4

4

4

4

Sign
extend

164

Mem

Opcode

Rs

Rt

Rd

Rd

(offset)

Rt
0

1

1

0

0 1

Write Enable

Write Enable

Choice: write
result of ALU or
load from
memory?

Choice: use the
address from the
middle or last 4
bits as the write
address?

Choice: use a second
register’s contents or
an offset as an
argument to the ALU?

Control-flow Instructions

35

Instruction Meaning Op Rs Rt Rd

BEQ Rs, Rt, offset
If R[s] == R[t] then

 PC  PC + 2 + offset*2

0111 0-15 0-15 offset

...

16-bit Encoding

Op Rs Rt Rd

0111 0001 0010 1110
BEQ R1, R2, -2

Example encoding:

Compute branch target for BEQ

36

Inst 32
16

Write Data

Read Addr 1

Read Addr 2

Write Addr

Read

 Data 1

Read

 Data 2

ALU

ALU Op

Reg Write

Control

Unit

16

16

Register File
16

4

4

4

4

Sign
extend

164

Read

Address

Instruction

Memory

+

PC

2 ov
er

flo
w

ze
ro

Shift left
by 1

+

0

1

1

0

Write Enable

Make branch decision

37

Inst Data Memory

Address

Write

Data

Read

Data

Mem Store

32
16

Write Data

Read Addr 1

Read Addr 2

Write Addr

Read

 Data 1

Read

 Data 2

ALU

ALU Op

Reg Write

Control

Unit

16

16

16

Register File
16

4

4

4

4

Sign
extend

164

Read

Address

Instruction

Memory

+

PC

2 ov
er

flo
w

ze
ro

Shift left
by 1

+

Branch?

0

1

Mem

0

1

1

0

0 1

Write Enable

Write Enable

What’s missing from what we covered in lecture?

o Details of Control Unit

• ALU op is not instruction opcode; some translation needed

• Reg Write bit (for ADD, SUB, AND, OR, LW)

• Mem Store bit (for SW)

• Mem bit (arithmetic/memory MUX bit)

• Branch bit (for BEQ)

o Implementation of JMP

o Implementation of HALT (basically stops the clock 

running the computer; we won’t implement this)

38

See Arch Assignment!

not the only implementation
Single-cycle architecture

• Relatively simple, (barely!) fits on a slide (and in our heads).

• Every instruction takes one clock cycle each.

• Slowest instruction determines minimum clock cycle.

• Inefficient.

Could it be better?

• Performance, energy, debugging, security, reconfigurability, …

• Pipelining

• OoO: Out-of-order execution

• Caching

• … enormous, interesting design space of Computer Architecture

39

HW ARCH Conclusion of unit: Computational Building Blocks (HW)

40

Topics

Transistors, digital logic gates

Data representation with bits, bit-level computation

Number representations, arithmetic

Combinational and arithmetic logic

Sequential (stateful) logic

Computer processor architecture overview

Lectures

Digital Logic

Data as Bits

Integer Representation

Combinational Logic

Arithmetic Logic

Sequential Logic

A Simple Processor

Labs

1: Transistors to Gates

2: Data as Bits

3: Combinational Logic & Arithmetic

4: ALU & Sequential Logic

5: Processor Datapath (next week)

Assignments

Gates

Zero

Bits

Arch (out now!)

Mid-semester exam 1: HW

October 10

