WELLESLEY

A\ 4

CS 240
Foundations of Computer Systems

A Simple Processor

1. A simple Instruction Set Architecture

2. A simple microarchitecture (implementation):
Data Path and Control Logic

https://cs.wellesley.edu/~cs240/

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

int p = g & 0x0000FFFF;

for (int 1 = 0; 1 < 10; 1++) {

}

How do we connect these?

16-bit
register

CA

Software

Hardware

connection

Implementation

Program, Application
Programming Language

Compiler/Interpreter

Operating System
Instruction Set Architecture

Microarchitecture
Digital Logic

Devices (transistors, etc.)

Solid-State Physics

Instruction Set Architecture (

Instructions processor memory

« Names, Encodings
« Effects Instruction Encoded
« Arguments, Results Logic Instructions

e Abstraction over ALUs

~
Local storage
« Names, Size

« Addresses, Locations

define the
between software and

Computer hardware

are an abstract

Com pUter model of the underlying
hardware.
hitecture (
This week:

HW ISA

An example ISA and
hardware implementation
for CS240!

are an abstract

. o model of the underlying
Basic building block of an ISA: hardware.

the instruction!

This week:

HW ISA

An example ISA and
hardware implementation
for CS240!

HW I[SA Summary (details to follow)

Word size = 16 bits (2 bytes)

o Register size = 16 bits « ALU computes on 16-bit values.

{2554 o Number of registers = 16
RO always holds O

 R1 always holds 1.

e Access 16 bits at once e |nstructions are 16 bits in size

Instruction
« Byte-addressable (new TR ¢ Stored in separate memory

address every 8 bits) DL o Program counter (PC) register
holds address of next instruction

HW I[SA R: Register File

Read ports

——>>| Register address #1 Read data 1 W
—> Register address #2 Read data 2

Write port
—~>| Register address #3

O = read
1 = write

Using your understanding of powers of 2 heeded to make selections, how many bits should be
on the labeled busses?

r=8 w=328
Read ports
—>>| Register address #1 Read data 1 n
——>| Register address #2 Read data 2 N r=16,w=16
Write port
—~>| Register address #3
\\N) Write data Write? IF = 4, W = 16
0 =read
1 = write
Word size = 16 bits, # registers = 16 r=16,w=4
ex r = ?
w =7
None of the above
[]

B Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

HW I[SA R: Register File

Read ports

——>| Register address #1 Read data 1 Thig

—> Register address #2 Read data 2

Write port
—~>| Register address #3

O = read
1 = write

Word size = 16 bits, # registers = 16

We'll think of the
register file like this:

RO always holds
hardcoded O

R1 always holds
hardcoded 1

R2 — R15: general purpose

(instructions can use them
to hold anything)

Reg

Contents

RO

0x0000

R1

0x0001

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

HW I[SA M: Data Memory

Memory is byte-addressable, accesses full words (16 bits)

Memory is “Little Endian”: the “little” (low) byte is stored
at the lower address.

Example: storing 1 at address 0x0 yields

We'll think of the data memory like this:

o
s’tract\o“ -

Address

Contents

Ox0 — Ox1

Ox01

0x00

Ox2 — 0x

N

Ox Ox5

0 X/

Ox8 — 0x9

OxA — OxB

OxC — 0OxD

11

What is the full word stored at address 0x2?

0x2345
Address Contents
Ox0-0x1 |[0Ox01 0x00 e
Ox2 —0x3 |[0x23 0x45
Ox4 — 0x5 |0x67 Oxab
Ox6 — Ox7
Ox8 — OxO 0x2300
OxA — OxB
OxC - 0xD
0x0023
Ox2367

B Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

HW I[SA IM: Instruction Memory

Instructions are 1 word in size.

Separate instruction memory.

Program Counter (PC) register

 holds address of next instruction to execute.

B Program Counter

o ‘
Abstract\o“ -

We'll think of the instruction memory
like this:

Address

Contents

Ox0 — Ox1

PC 0x0
———— 1
PC -
2. PC&E PC+2
— Loop | .
3. Doins

Ox2 — 0x3

Ox4 — Ox5

Ox6 — Ox/

Ox8 — 0x9

13

M: Data Memory R: Register File

HW I[S A Address |Contents Reg [Contents
Ox0 —Ox1 RO |0x0000
Ox2 —Ox3 R1 _ |0x0001
Ox6 — Ox/
0x8 — 0x9 R3
Abstract Machine Xo—UX =
OxA — OxB
0xC — OxD RS
R6
R7
PC: Program Counter IM: Instruction Memory R8
Address |Contents R9
Ox0 — Ox1 R10
Ox2 — Ox3 o171
Processor Loop 0x4 — Ox5
R12
1. ins < IM[PC] Ox6 — 0x7
2. PC& PC+2 0x8 — 0x9 R13
3. Doins R14
R15

HW I[SA Instructions

JMP offset is

unsigned
All other offsets
are signed

Assembly Syntax |Meaning

ADD Rs, Rt, Rd
SUB Rs, Rt, Rd
AND Rs, Rt, Rd
OR Rs, Rt, Rd
LW Rt, offset(Rs)

SW Rt, offset(Rs)
BEQ Rs, Rt, offset

JMP offset

HALT

R[d] € R[s] +R[t]
R[d] € R[s]-R[t]
R[d] € R[s] &R[t]
Rld] < Rls] | R[t]

R[t] € MIR[s] + offset]

MI[R[s] + offset] €

If R[s] == R[t] then
PC < PC+ 2+ offset*2

PC €

R[]

offset™?2

Stops program execution

(R = register file,

M = data memory)

MSB

16-bit Encoding

LSB

“u
0010 S

0011 S t
0100 S t
0101 S t
0000 S t
0001 S t
0111 S t

1000 offset
1111

Arithmetic

Memory

Control flow

15

HW I[SA IM: Instruction Memory

Instructions are 1 word in size.

Separate instruction memory.

Program Counter (PC) register

 holds address of next instruction to execute.

B Program Counter

o ‘
Abstract\o“ -

We'll think of the instruction memory
like this:

Address

Contents

Ox0 — Ox1

ADD RO, R1, R2

PC 0x2
——— 1
PC -
2. PC&E PC+2
— Loop | .
3. Do ins

Ox2 — 0x3

SUB R2, R1, R3

Ox4 — Ox5

OR R3, R3, R4

Ox6 — Ox/

Ox8 — 0x9

16

What is the next operation this processor will do?

Program Counter SUB
PC 0x2 Address |Contents
0x0-0x1 |ADD RO, R1, R2
Processor 1. ins€ IM[PC]| [0x2-0x3 |SUBR2,R1, R3
2. PCE& PC+2 Ox4 —0x5 |ORR3, R3,R4
Loop 3. Doins 0x6 — 0x7
Ox8 — 0x9
OR

None of the above

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

M: Data Memory R: Register File

Address |Contents Reg |[Contents
Ox0 — 0Ox1 |OxOF Ox00 RO 0x0000
Ox4 — Ox5 5
Ox6 — Ox/
R3
o Ox8 — 0x9
Fill |rr1].the rest cl)Of thecI OxA — OxB R4
mcj;\c. |.n.e state based on OxC — OxD RS
this initial state
R6
R7
PC: Program Counter IM: Instruction Memory R3
Address |Contents RO
0x0—0x1 |ADD R1, R1, R2 210
0x2 —0x3 [SW R2, 4(R0O) 211
Processor Loop Ox4 —0x5 |HALT
R12
1. ins € IM[PC] 0x6 — O0x7
2. PC&E PC+2 Ox8 — 0x9 R13
3. Doins R14
R15

Execution Table for Exercise #0 (shows step-by-step execution)

Solutions

0x0 ADDR1,R1,R2 R[2] € R[1]&R[1] =1+140x0002:] PC& PC+2=0+2 =2
Ox2 SW R2, 4(R0) M[R[O] + 4] = M[4] € R[2]40x0002;:] RC & PC+2=6+2 =8

Ox4 HALT Program execution stops

__

.Reminder: the two bytes will are
'stored in Little Endian order when
'we store them to memory M.

EThat is, the byte 0x02 will be stored
in the “little” end of the word—the
lower address of the pair of

addresses that store the word. 0x00
‘will be stored at the higher address.

19

Exercise O
Solutions

HW ISA

PC: Program Counter

Processor Loop

1. ins &€ IMJ[PC]

2. PC&E PC+2
3. Doins

M: Data Memory

Address

Contents

R: Register File

Ox0 — Ox1

OxOF 0Ox00

Reg

Contents

Ox2 — Ox3

0x04 Ox01

RO

0x0000

Ox4 — Ox5

0Ox02 0x00

R1

0x0001

Ox6 — Ox/

R2

0x0002

Ox8 — 0x9

R3

OxA — OxB

R4

OxC — 0OxD

R5

R6

IM: Instruction Memory

R7

Address

Contents

R8

Ox0 — Ox1

ADD R1, R1, R2

RS

Ox2 — 0x3

SW R2, 4(R0)

R10

Ox4 — Ox5

HALT

R11

Ox6 — Ox/

R12

Ox8 — 0x9

R13

R14

R15

20

M: Data Memory R: Register File

Address |Contents Reg |[Contents
OxO0 —0x1 |OxOF 0x00 RO 0x0000
Ox2 — 0x3 [0x04 Ox01 R1_ |0x0001
Ox4 — Ox5 5
Ox6 — Ox7/
Ox8 — 0x9 "3
Fill in the rest of the OxA — OxB R4
mz.';\c.hi.n.e state based on I%C — OxD RS
this initial state RG
R7
PC: Program Counter IM: Instruction Memory R3
Address |Contents RS
0x0—0x1 (LW R3, O(RO) 210
0x2 — 0x3 |LW R4, 2(R0)]
Processor Loop Ox4 —0x5 [AND R3, R4, R5 =5
1. ins € IM[PC] Ox6 — 0x7 |SW R5, 4(RO)
2. PC& PC+2 Ox8 —0x9 ([HALT R13
3. Doins R14
R15

Execution Table for Exercise #1 (shows step-by-step execution)

0x0 LW R3 O(RO)

22

Exercise 2

HW ISA

Fill in the rest of the
machine state based on
this initial state

PC: Program Counter

Processor Loop

1. ins &€ IMJ[PC]
2. PC&E PC+2
3. Doins

Address

Contents

R: Register File

Ox0 — Ox1

OxOF

0x00

Reg

Contents (time: —)

Ox2 — Ox3

0Ox04

Ox01

RO

0x0000

Ox4 — Ox5

R1

0x0001

Ox6 — Ox/

R2

Ox8 — 0x9

R3

OxA — OxB

R4

OxC — OxD

R5

IM: Instruction Memory

R6

R7

Address

Contents

R8

Ox0 — Ox1

SUB RS, RS, R8

RS

0x0002

Ox2 — 0x3

BEQ RS9, RO, 3

R10

0x0003

Ox4 — Ox5

ADD R10, R8, R8

R11

Ox6 — Ox/

SUB R9, R1, RS

R12

Ox8 — 0x9

JMP 1

OxA — OxB

HALT

R13

R14

R15

Execution Table for Exercise #2 (shows step-by-step execution)

0x0 SUB R8, R8, R8

24

HW ARCH microarchitecture

O} oroyre

Instruction

Fetch and Registers
Decode

ﬁ

One possible hardware implementation of the HW ISA

25

Instruction Fetch
(default, unless branch or jump)

Fetch instruction from memory.

Increment program counter (PC)
to point to the next instruction.

2. PC& PC+2
Loop C C

N

>Add

2 —

| PC

Instruction
Memory

Read

| Address

Instruction

26

Which of the following is used inside this unit?

D-flip-flop

Ripple-carry adder

Encoder

A&B

B&C

C&D

B Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Instruction Encoding: 3 formats
All have 4-bit opcode in MSBs

Arithmetic instructions:

- 2 source register IDs (Rs,Rt) -EE-

- 1 destination register ID (Rd) opcode RS

Memory/branch instructions:

- address/source register ID (Rs) 15:12 m

- data/source register ID (Rt) opcode Rs Rt offset
- 4-bit offset
Jump instruction: 15.1

- 12-bit offset opcode offset

28

Arithmetic Instructions
16-bit Encoding

Instruction ___|Meaning ___|Opcode _Rs_Rt _Rd__

ADD Rs, Rt, Rd R[d] € R[s] +R[t] 0010 0-15 0-15 0-15
SUBRs, Rt, Rd R[d] € R[s]-R[t] 0011 0-15 0-15 0-15
AND Rs, Rt, Rd R[d] € R[s] & R[t] 0100 0-15 0-15 0-15
ORRs,Rt, Rd Rd € R[s]|R[t] 0101 0-15 0-15 0-15

Example encoding:

ADD R3, R6, RS acdelat LR

0010 0011 0110 1000

29

Arithmetic Instructions:
Instruction Decode, Register Access, ALU

Opcode 4 Control
N | Unit
Reg Write
4 Write E"nable ALU Op
5\ e Read Addr 1 Read \16 \\
16 4 |ReadAddr2 Datal [X
~———® Rt . . . overflow
Instruction | , Register File > ALU L—. zero
\\ Rdl Write Addr Read 16
\ ALU result
\<6 | Write Data Data 2 \

The control unit

A large instantiation of a truth table that controls parts of the microarchitecture

ALU Op

Opcode .4 Control
N | Unit

/ Reg Write

Output: many wires
controlling decisions

Input: the opcode
from the instructions

You will implement the control unit on the Arch Assignment!

31

Memory Instructions

instruction ___Meaning__0p_[Rs Rt _Rd__

LW Rt, offset(Rs) R[t] & Mem[R[s] + offset] 0000 O0-15 0-15 offset
SW Rt, offset(Rs) Mem|[R[s] + offset] &< R[t] 0001 O0-15 0-15 offset

Example encoding:

SW R6, -8(R3) LRI

0001 0011 0110 1000

32

Memory Instructions: How can we support arithmetic
Instruction Decode, and memory instructions?
Register/Memory Access, ALU

What's shared?
1 Control
N\
Opcode N 1 Unit
Reg Write ALU Op
\4 R d AdVZ/jrite]Ifnable I\/Iem Store
< Rs - r Read \16 \\ e
16| .4 Data 1 N | Address
\\ .\\? - Read Adcflrz | 16 /7 ress
Inst Register File >ALU \
| N Data Memory
Rt Write Addr Read \16
Data 2 N\ / Write Read
\<6 | Write Data | Data Dat3
Rd \4 \4 (Sign W \16

(offset) N | extend | \

Choose between Arithmetic/Memory instructions with MUXs

Mem
A Control
Opcode \\ 1 Unit
Reg Write ALU Op
\4 . d AdV:/jrite]I-Enable Mem Store
| Rea r
d A Rs Read \16 \\ Write ‘I:Znable
\16. \4 Read Addr 2 Data 1 \ 16 | Address
NN Rt : -
Inst L : Register File > e
Rt 11 | 5 ALY Data Memory
4 o [1 Write Addr Read |16 ™
. PANEES
Choice: use the \Rd Data 2 ﬁ 0 / Write Read
16 i 1
address from the \\ Write Data : | Data Data
middle or last 4
Rd 4 (Sign .16 ‘ L
bits 3s the write \ \ _ 1 | Choice: write
ddlioec (offset) \ L extend J I\ Choice: use a second : ecult of ALU or
€551 register’s contents or
load from
an offset as an
memory?

argument to the ALU?

34

Control-flow Instructions

16-bit Encoding

Instruction __Meaning ________0p ks Rt _[Rd

If R[s] == R[t] then
BEQ Rs, Rt, offset 0111 O0-15 O0-15 offset
2 It PC < PC + 2 + offset*2 i1

Example encoding:

BEQRL R2, -2 an S

0111 0001 0010 1110

35

Compute branch target for BEQ

=> A
2.

Instruction
Memory

| Read

Address

Shift left _> *
by 1
A

4 @trol
\ > °
\ w
Reg Write
4 Write"EnabIe
r\\ | Read Addr 1 Read
\16, \4 | Read Addr2 Datal
\ . .
Inst) - Register File
4 | Write Addr pead |16
fxﬁ' \
. Data2 |°
Write Data

\4(Sign 1\16

\LextendJ N

36

Make branch decision

1PC

|

\ L extend J \

+
[Shift left }_> n
by 1
X \ Branch?
Mem
4 Control
A : i
\ Unit
>+ Reg Write
2 > Write"EnabIe
4 Mem Store
Instruction r\\ | Read Addr 1 Read _Y
Memory Write Enable
o \16, \4 Read Addr2 Datal { Address
—(O—>p \ \ > .)
Address : Register File
Inst t 1 , 5 Data Memory
;4 o1 Write Addr Read
. Data 2 Write Read
\{6 Write Data | Data Data
\4 [Sign .16 | |

o1

37

What’s missing from what we covered in lecture?

O

O

O

Details of Control Unit

ALU op is not instruction opcode; some translation needed
Reg Write bit (for ADD, SUB, AND, OR, LW)

Mem Store bit (for SW)

Mem bit (arithmetic/memory MUX bit)

Branch bit (for BEQ)
Implementation of JMP

Implementation of HALT (basically stops the clock
running the computer; we won’t implement this)

See Arch Assignment!

HW ARCH not the only implementation

Single-cycle architecture
» Relatively simple, (barely!) fits on a slide (and in our heads).
e Every instruction takes one clock cycle each.
e Slowest instruction determines minimum clock cycle.

e |nefficient.
Could it be better?

 Performance, energy, debugging, security, reconfigurability, ...

e Pipelining

e 000: Out-of-order execution

e Caching

e ...enormous, interesting design space of Computer Architecture

Conclusion of unit: Computational Building Blocks (HW)

Lectures Topics
Digital Logic Transistors, digital logic gates
Data as Bits Data representation with bits, bit-level computation
Integer Representation Number representations, arithmetic
Combinational Logic Combinational and arithmetic logic
Arithmetic Logic Sequential (stateful) logic
Sequential Logic Computer processor architecture overview

A Simple Processor

Labs Assignments
1: Transistors to Gates Gates Mid-semester exam 1: HW
2: Data as Bits ero October 10
3: Combinational Logic & Arithmetic Bits
4: ALU & Sequential Logic Arch (out now!)

5: Processor Datapath (next week)
40

