
CS 251 Fall 2019

Principles of Programming Languages

Ben WoodλCS 240

Foundations of Computer Systems

https://cs.wellesley.edu/~cs240/

Integer Representation
Representation of integers: unsigned and signed

Modular arithmetic and overflow

Sign extension

Shifting and arithmetic

Multiplication

Casting

1

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

Fixed-width integer encodings

Unsigned	 ⊂ N 	 non-negative integers only

Signed	⊂ Z 	 both negative and non-negative integers

2

n bits offer only 2n distinct values.

0110010110101001

“Most-significant” bit(s)
or “high-order” bit(s)

“Least-significant” bit(s)
or “low-order” bit(s)

MSB LSB
Terminology:

(4-bit) unsigned integer representation

n-bit unsigned integers:

	

	 unsigned minimum =

	

	 unsigned maximum =

3

1		 0		 1		 1

8	 	 4	 	 2	 	 1

23	 	 22	 	 21	 	 20

3	 	 2	 	 1	 	 0

= 1 x 23 + 0 x 22 + 1 x 21 + 1 x 20

position
weight

2n - 1

0

modular arithmetic, unsigned overflow

4

0000
0001

0011

1111
1110

1100

1011

1010

1000 0111
0110

0100

0010

0101
1001

1101

0
 1

 2

 3

 4

 5

 6
 78

9

10

11

12

13

14
15

unsigned overflow = "wrong" answer = wrap-around = carry 1 out of MSB = math answer too big to fit		 	 	

x+y in n-bit unsigned arithmetic is (x + y) mod 2N in math

4-bit
unsigned
integers

Unsigned addition overflows if and only if a carry bit is dropped.

11

+ 2

1011

+ 0010

13

+ 5

1101

+ 0101

10

1

11 01

1

00

11

(x + y) mod 2N

a carry bit is dropped.

13 2

(4-bit) two's complement 
	 signed integer representation

4-bit two's complement integers:

	 signed minimum =

	 signed maximum =

5

1		 0		 1		 1

-(23)	 22	 	 21	 	 20

= 1 x -(23) + 0 x 22 + 1 x 21 + 1 x 20

compare
to unsigned

- (2(n - 1))
2(n - 1) - 1

4-bit min: 1000

4-bit max: 0111

still only 2n distinct values, half negative.

alternate signed attempt: sign-magnitude
Most-significant bit (MSB) is sign bit

0 means non-negative	 1 means negative

Remaining bits are an unsigned magnitude

6

Arithmetic?

Example: 
4 - 3 != 4 + (-3)

Zero?

 00000100  
+10000011  

!!!

ex8-bit sign-magnitude:		 	 Anything weird here?

00000000 represents _____

01111111 represents _____

10000101 represents _____

10000000 represents _____

Note: this is not
two’s complement

two’s complement vs. unsigned

7

 _		 _	 	 …	_	 	 _	 	 _

 2n-1	 2n-2	 …	 22	 	 21	 	 20

-(2n-1)	2n-2	 …	 22	 	 21	 	 20 two's complement

places

unsigned

places

0- (2(n - 1)) 2(n - 1) - 1 2n - 1

two's complement range

(2n values)

unsigned range

(2n values)

4-bit unsigned vs. 4-bit two’s complement

8

0000
0001

0011

1111
1110

1100

1011

1010

1000 0111
0110

0100

0010

0101
1001

1101

0
 1

 2

 3

 4

 5

 6
 78

9

10

11

12

13

14
15

0000
0001

0011

1111
1110

1100

1011

1010

1000 0111
0110

0100

0010

0101
1001

1101

0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 8

– 7

– 6

– 5

– 4

– 3

– 2
– 1

11 -5difference = ___ = 2___

1 0 1 1
1 x 23 + 0 x 22 + 1 x 21 + 1 x 20 1 x -23 + 0 x 22 + 1 x 21 + 1 x 20

4-bit
unsigned

4-bit

two's

complement

8-bit representations

9

1 0 0 0 0 0 0 1

1 1 1 1 1 1 1 1

0 0 0 0 1 0 0 1

0 0 1 0 0 1 1 1

n-bit two's complement numbers:

	

	 minimum =	 	 	 	 	 	 maximum =

ex

10

11

two’s complement (signed) addition

12

0000
0001

0011

1111
1110

1100

1011
1010

1000 0111
0110

0100

0010

0101
1001

1101

0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 8

– 7

– 6

– 5

– 4

– 3

– 2
– 1

2

+ 3

5

0010

+ 0011

Modular Arithmetic

-2

+ 3

1

1110

+ 0011

-2

+ -3

-5

1110

+ 1101

2

+ -3

-1

0010

+ 1101

10

1

10 1101

1000 1111

11

111

Some CPUs/languages raise exceptions on overflow.

C and Java cruise along silently... Feature? Oops?

two’s complement (signed) overflow

13

0000
0001

0011

1111
1110

1100

1011

1010

1000 0111
0110

0100

0010

0101
1001

1101

0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 8

– 7

– 6

– 5

– 4

– 3

– 2
– 1

6

+ 3

0110

+ 0011

Modular Arithmetic

-1

+ 2

1111

+ 0010

Addition overflows

	 if and only if the arguments have the same sign but the result does not.

	 if and only if the carry in and carry out of the sign bit differ.

1000

111

1001

110

"... a Model 787 airplane … can lose all
alternating current (AC) electrical power …
caused by a software counter internal to the
GCUs that will overflow after 248 days of
continuous power. We are issuing this AD to
prevent loss of all AC electrical power, which
could result in loss of control of the airplane."
--FAA, April 2015

Ariane 5 Rocket, 1996

14

Exploded due to cast of

64-bit floating-point number
to 16-bit signed number.

Overflow.

Boeing 787, 2015

Recall: software correctness

A few reasons two’s complement is awesome

Arithmetic hardware

The carry algorithm works for everything!

Sign

The MSB can be interpreted as a sign bit.

Negative one

-110 is encoded as all ones: 0b11…1

Complement rules

	 -x == ~x + 1

	 5 is 0b0101

	 	 ~0b0101 is 	 0b1010

	 	 	 	 	 	 +	 1

	 	 	 	 	 	 0b1011 is -5

15

0000
0001

0011

1111
1110

1100

1011
1010

1000 0111
0110

0100

0010

0101
1001

1101

0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 8

– 7

– 6

– 5

– 4

– 3

– 2
– 1

Even subtraction!

x - y == x + -y == x + ~y + 1

Another derivation

How should we represent 8-bit negatives?

• For all positive integers x, 

we want the representations of x and –x to sum to zero.

• We want to use the standard addition algorithm.

 

 00000001 00000010 00000011  
 + + +  
 00000000 00000000 00000000

• Find a rule to represent –x where that works…

16

11111111

11111111

01111111

1111111

10111111

11111111

ex

Convert/cast signed number to larger type.

17

1 1 1 1 1 1 0 0 8-bit -4

16-bit -4_ _ _ _ _ _ _ _ 1 1 1 1 1 1 0 0

0 0 0 0 0 0 1 0 8-bit 2

16-bit 2_ _ _ _ _ _ _ _ 0 0 0 0 0 0 1 0

Rule/name?

Sign extension for two's complement

18

1 1 1 1 1 1 0 0 8-bit -4

16-bit -41 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

0 0 0 0 0 0 1 0 8-bit 2

16-bit 20 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Casting from smaller to larger signed type does sign extension.

unsigned shifting and arithmetic

19

0 0 0 1 1 0 1 1
y = x << 2;

0 0 0 1 1 0 1 1 0 0

x = 27;

y == 108

1 1 1 0 1 1 0 1
y = x >> 2;

0 0 1 1 1 0 1 1 0 1

x = 237;

y == 59

unsigned

x*2n mod 2w

⎣x/2n⎦

unsigned

logical shift left

logical shift right

n = shift distance in bits, w = width of encoding in bits

It’s complicated…

(but no more so than multiplication)

Think overflow.

two's complement shifting and arithmetic

20

arithmetic shift right

1 1 1 0 1 1 0 1
y = x >> 2;

1 1 1 1 1 0 1 1 0 1

x = -19;

y == -5

signed

⎣x/2n⎦

1 0 0 1 1 0 1 1
y = x << 2;

1 0 0 1 1 0 1 1 0 0

x = -101;

y == 108 logical shift left

signed

n = shift distance in bits, w = width of encoding in bits

21

shift-and-add
Available operations

x << k 	 implements x * 2k

x + y

Implement y = x * 24 using only <<, +, and integer literals

22

y = x * (16 + 8);

y = (x * 16) + (x * 8);

y = (x << 4) + (x << 3)

Parenthesize shifts to be clear about precedence, which may not always be what you expect.

ex

Casting Integers in C

Number literals: 37 is signed, 37U is unsigned

Integer Casting: bits unchanged, just reinterpreted.

23

!!!

Explicit casting:

int tx = (int) 73U; // still 73
unsigned uy = (unsigned) -4; // big positive #

Implicit casting:		 Actually does

tx = ux; // tx = (int)ux;
uy = ty; // uy = (unsigned)ty;
void foo(int z) { ... }
foo(ux); // foo((int)ux);
if (tx < ux) ... // if ((unsigned)tx < ux) ...

More Implicit Casting in C
If you mix unsigned and signed in a single expression, then 
signed values are implicitly cast to unsigned.

Argument1 Op	 Argument2	 Type	 Result

0 == 0U unsigned	 1
-1 < 0 signed	 1
-1 < 0U unsigned	 0
2147483647 < -2147483647-1
2147483647U < -2147483647-1
-1 < -2
(unsigned)-1 < -2
2147483647 < 2147483648U
2147483647 < (int)2147483648U

24

!!!
How are the argument

bits interpreted?

Note: Tmin = -2,147,483,648 Tmax = 2,147,483,647

Tmin must be written as -2147483647-1 (see pg. 77 of CSAPP for details)

25

26

Aside: real-world connection to Alexa’s research

 address + zero_extend_64(x << 2)

Conceptually, the compiler tried to convert this with a 32-bit x:

64 bits 32 bits

Incorrect address calculated!

<< 2

32 bits

64 bits
zero extend

 address + (zero_extend_64(x) << 2)

To this:

Security-critical bug in shift-and-extend code

27

