Exam 2 topics

Lectures Topics
Programmlng with Memory C programming: pointers, dereferencing, arrays,
X86 Basics

structs, cursor-style programming, using malloc
X86: instruction set architecture, machine code,
assembly language, reading/writing x86, basic
program translation

Procedures and the call stack, data layout,
security implications

x86 Control Flow

x86 Procedures, Call Stack
Representing Data Structures
Buffer Overflows

Processes Model

Shel!s | Processes, shell, fork, wait
(Basics of) Memory Alloc, Caching Basics of: malloc implementation, caching
Labs
Pointers in C Assignments
X86 Assembly Pointers Exam 2- ISA
x86 Stack X8 December 10 (during last lab)
Data structures in memory Buffer
Buffer overflows Concurrency

Processes Malloc checkpoint



WELLESLEY

A\ 4

CS 240
Foundations of Computer Systems

Practice problems

https://cs.wellesley.edu/~cs240/



https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

Xx86 short answer practice problems

1. Which x86 instructions implicitly change the stack pointer? How do they change it?

2. What are some things defined by the word size? What is the word size we have been using for x86
in class?

3. Describe the general idea of a buffer overflow exploit in C code compiled to x86.

4. Describe how a child process’s memory is related to the memory of the parent process.



Xx86 short answer practice problems

1. Which x86 instructions implicitly change the stack pointer? How do they change it?

pushg popqg call ret
Srsp —= 38 Srsp += 38 Srsp —= 3 Srsp += 38

2. What are some things defined by the word size? What is the word size we have been using for x86

in class? Register size, address size, pointer size
NOT instruction size (variable-width instruction size)

3. Describe the general idea of a buffer overflow exploit in C code compiled to x86.

Buffer overflow occurs when code lacks bounds checking in writing untrusted input to a
destination region of memory that is too small. Buffer overflow attacks can overwrite the return
addresses on the stack to point to further exploit code.

4. Describe how a child process’s memory is related to the memory of the parent process.

The child process starts with a copy of the state of the parent’s memory. It is a private copy:
the child and the parent do not share memory once the child is created.



2-D array practice problem

long al[2]1[3]; 1. Draw a picture of how this array is laid out in memory, labeling the

indices and byte offset of each element (starting witha[0] [O] at
offset +0);

Recall: index = C*r + c
scale by element size

long get elem 1 2(long afl2][3]) {
return al[l]l[2];

2. Write x86 assembly code to
implement this function.

J




2-D array practice problem: solution

long al2][3];

1. Draw a picture of how this array is laid out in memory, labeling the

indices and byte offset of each element (starting witha[0] [O] at

offset +0);

Recall: index = C*r + c
a[0][0]]a[0]1[1]ja[0][2]fa[1][0]fa[1][1]fa[1][2] scale by element size
+0 +8 +16 +24 +32 +40

long get elem 1 2(long afl2][3]) {

return a

11 [2]7

2. Write x86 assembly code to
implement this function.

Since we know the size, we can calculate

C*r+c=3*1+2 =5, 5*sizeof(lon

g) =5*8 =40

movg 40(%rdi),%rax
retqg



Xx86 arithmetic practice problem

long funmathO (long x,

J

return x + 4*y + 21;

long y)

long funmathl (long x,

J

return 2*x + 4*y + 21;

Llong y) |

long funmath2 (long x,

J

return 6*x + 5*y + 21;

long y)

Implement the above functions in x86 without addg ormulg.
You can use 1leaqg and any other x86 instruction.

Recall: addressing modes can only multiply by 1, 2, 4, or 8.



Xx86 arithmetic practice problem

long funmathO (long x, long vy)
return x + 4*y + 21;

J

{

long funmathl (long x, long vy)
return 2*x + 4*y + 21;

J

{

long funmathZ (long x, long V)
return 6*x + 5*y + 21;

J

{

3 possible answers:

funmathO:
leaq 21(%rdi,%rs1i,4), %rax
ret

funmathl:
leaq (%rdi,%rsi,2), %rax
leaq 21 (%rax,%rax), %rax
ret

funmath?2:
leaq (%rdi,%rdi,2), %rdx
leaq (%rsi,%rsi,4), %rax
leaq 21(3rax,3rdx,2), %rax
ret

Implement the above functions in x86 without addg ormulg.

You can use 1leaqg and any other x86 instruction.

Recall: addressing modes can only multiply by 1, 2, 4, or 8.



