
Exam 2 topics

1

Topics

C programming: pointers, dereferencing, arrays,

structs, cursor-style programming, using malloc

x86: instruction set architecture, machine code,

assembly language, reading/writing x86, basic

program translation

Procedures and the call stack, data layout,

security implications

Processes, shell, fork, wait

Basics of: malloc implementation, caching

Lectures

Programming with Memory

x86 Basics

x86 Control Flow

x86 Procedures, Call Stack

Representing Data Structures

Buffer Overflows

Processes Model

Shells

(Basics of) Memory Alloc, Caching

Labs

Pointers in C

x86 Assembly

x86 Stack

Data structures in memory

Buffer overflows

Processes

Assignments

Pointers

x86

Buffer

Concurrency

Malloc checkpoint

Exam 2: ISA

December 10 (during last lab)

CS 251 Fall 2019

Principles of Programming Languages

Ben WoodλCS 240

Foundations of Computer Systems

https://cs.wellesley.edu/~cs240/

Practice problems
For Exam 2: ISA

2

https://cs.wellesley.edu/~cs240/
https://cs.wellesley.edu/~cs240/

x86 short answer practice problems

3

ex
1. Which x86 instructions implicitly change the stack pointer? How do they change it?

2. What are some things defined by the word size? What is the word size we have been using for x86
in class?

3. Describe the general idea of a buffer overflow exploit in C code compiled to x86.

4. Describe how a child process’s memory is related to the memory of the parent process.

x86 short answer practice problems

4

ex
1. Which x86 instructions implicitly change the stack pointer? How do they change it?

2. What are some things defined by the word size? What is the word size we have been using for x86
in class?

3. Describe the general idea of a buffer overflow exploit in C code compiled to x86.

4. Describe how a child process’s memory is related to the memory of the parent process.

pushq

%rsp —= 8

popq

%rsp += 8

ret

%rsp += 8

call

%rsp -= 8

Register size, address size, pointer size

NOT instruction size (variable-width instruction size)

Buffer overflow occurs when code lacks bounds checking in writing untrusted input to a
destination region of memory that is too small. Buffer overflow attacks can overwrite the return
addresses on the stack to point to further exploit code.

The child process starts with a copy of the state of the parent’s memory. It is a private copy:
the child and the parent do not share memory once the child is created.

2-D array practice problem

5

long a[2][3]; 1. Draw a picture of how this array is laid out in memory, labeling the
indices and byte offset of each element (starting with a[0][0] at
offset +0);

2. Write x86 assembly code to
implement this function.

long get_elem_1_2(long a[2][3]){

 return a[1][2];

}

Recall: index = C*r + c

 scale by element size

ex

2-D array practice problem: solution

6

long a[2][3]; 1. Draw a picture of how this array is laid out in memory, labeling the
indices and byte offset of each element (starting with a[0][0] at
offset +0);

2. Write x86 assembly code to
implement this function.

long get_elem_1_2(long a[2][3]){

 return a[1][2];

}

Recall: index = C*r + c

 scale by element size

ex

a[0][0] a[0][1]a[0][2]a[1][0]a[1][1]a[1][2]

+0 +8 +16 +24 +32 +40

 movq 40(%rdi),%rax
 retq

Since we know the size, we can calculate

C*r+c = 3*1+2 = 5, 5*sizeof(long) = 5*8 = 40

x86 arithmetic practice problem

7

long funmath1(long x, long y) {

 return 2*x + 4*y + 21;

}

Implement the above functions in x86 without addq or mulq.

You can use leaq and any other x86 instruction.

Recall: addressing modes can only multiply by 1, 2, 4, or 8.

ex

long funmath2(long x, long y) {

 return 6*x + 5*y + 21;

}

long funmath0(long x, long y) {

 return x + 4*y + 21;

}

x86 arithmetic practice problem

8

long funmath1(long x, long y) {

 return 2*x + 4*y + 21;

}

Implement the above functions in x86 without addq or mulq.

You can use leaq and any other x86 instruction.

Recall: addressing modes can only multiply by 1, 2, 4, or 8.

ex

long funmath2(long x, long y) {

 return 6*x + 5*y + 21;

}

long funmath0(long x, long y) {

 return x + 4*y + 21;

}

funmath0:
 leaq 21(%rdi,%rsi,4), %rax
 ret

funmath1:
 leaq (%rdi,%rsi,2), %rax
 leaq 21(%rax,%rax), %rax
 ret

funmath2:
 leaq (%rdi,%rdi,2), %rdx
 leaq (%rsi,%rsi,4), %rax
 leaq 21(%rax,%rdx,2), %rax
 ret

3 possible answers:

