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Computer arithmetic 
Integers and floats 

Arithmetic 10-2 

Multiplication hardware 
o  The multiplication 

algorithm we learned in 
grammar school leads to 
a simple if somewhat 
inefficient design: 
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Refined version of mult hardware 
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Twos-complement multiplication 
o  Multiplication of 

signed integers could 
be done by multiplying 
numbers and then 
figuring out the sign. 

o  However, the above 
algorithm works for 
twos-complement 
provided we extend 
the sign bit 
appropriately. 

Arithmetic 10-4 



2 

Fast multiplication 
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Division hardware 
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Refined version of division hardware 
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Representing reals 
o  Numbers with fractions, 

e.g., 3.14159265… (π). 
o  Very small numbers, e.g., .

000000001 = 1.0 x 10-9 
o  Very large numbers, e.g., 

3,155,760,000 = 3.15576 
x 109 
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Binary fractions  
o  We can also show binary 

numbers in normalized 
scientific notation using 
the notation: 
  1.xxxx2 x 2yyyy 

o  We now call the “.” symbol 
the binary point. We also 
call this format “floating-
point” because the binary 
point is not fixed. 
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Life is not also so easy 
o  What if the fractional part is not an exact power of two?  We 

will need to approximate! 

 2-1 = .12 = .510 
 2-2 = .012 = .2510 
 2-3 = .0012 = .12510 
 2- 4 = .00012 = .062510 
 2-5 = .000012 = .0312510 
 2-6 = .0000012 = .01562510 
 2-7 = .00000012 =  .007812510 
 2-8 = .000000012 = .003906310 
 2-9 = .0000000012 = .001953110 
 2-10 = .00000000012 = .000976610 etc… 

 
o  Then, sum to the degree of precision necessary. For example, 

what does .310 =   ? 
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Floating-point numbers:   
  (-1)sign x fraction x 2exponent 

o  A fixed word size means that there is a tradeoff 
between accuracy and range: 

o  more bits for fraction gives more precision of fraction 
o  more bits for exponent increases range of numbers that can 

be represented. 
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IEEE 754 floating-point standard 
o  Single precision 

o  Double precision 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7  6  5  4  3  2  1  0!

s! exponent! fraction!

1 bit 8 bits 23 bits 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7  6  5  4  3  2  1  0!

s! exponent! fraction!

1 bit 11 bits 20  bits 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7  6  5  4  3  2  1  0!

fraction continued!

32  bits 
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Water over (and under) the dam 
o  Overflow is now the case 

where the positive 
exponent is too large to 
be represented in the 
exponent field. 

o  But now there is also 
underflow, i.e., the case 
where the negative 
exponent is too large to 
fit in the exponent field. 
In this case, the 
fractional part has 
become so small that it 
cannot be represented. 
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Some unpleasant details 
o  Placing the exponent before the fraction simplifies sorting 

of floating point numbers using integer comparison 
instructions. 

o  But, what about negative exponents?  They “look” big 
because the leading digit is a 1! 

o  Exponent is “biased” to make sorting easier.  The bias is 
subtracted from the normal, unsigned value, to determine 
the real value.   Bias = 127 for single precision and 1023 for 
double precision: 
    (–1)sign x (1 + fraction) x  2exponent – bias  
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So an IEEE engineer walks into a bar ... 
 ... and orders 
1.00000000001000000082740370999090373516082763671875 
root beers. The bartender says, "I'll have to charge extra; that's a 
root beer float". And the engineer says, "In that case, make it a 
double." 

 
 
 
 
 
 
 

  
 We order a -.7510 float and make it a double. 
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Aaaahhhh!!! 
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Floating point multiplication: 
 1.000 x 2-1 times -1.110 x 2-2 

1.  Add exponent without bias: 
  -1 + (-2) = -3!

2.  Multiple significants: 
       1.000!
! !   x 1.110!
! ! !  0000!
! !    1000!

  ! !  1000!
! !  1000!
!    1.110000!

3.  Normalize and check for 
overflow or underflow: 
  1.110 x 2-3 
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4.  Round the product: 
  1.110 x 2-3 

5.  Calculate sign of result: 
  1 x (-1) = -1 
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The infamous Pentium bug (1994) 


