
1

CS240 Computer Organization
Department of Computer Science
Wellesley College

Computer arithmetic
Integers and floats

Arithmetic 10-2

Multiplication hardware
o  The multiplication

algorithm we learned in
grammar school leads to
a simple if somewhat
inefficient design:

! ! !1000 !
Multiplicand

! x!1001 ! Multiplier
! ! !1000!

 0000!
 0000!
 1000!
 1001000 Product
!

Multiplicand

64-bit ALU

Product

Multiplier

Control Write

Shift left

Shift right

64 bits

64 bits

0000 1000

0000 0000

0001 0000

0000 1000

0100
0010

0010 0000

0000 1000

1001

0001

0100 0000

0000 1000

0100 1000

Arithmetic 10-3

Refined version of mult hardware

Multiplicand

32-bit ALU

Product Control
test Write

Shift right

32 bits

64 bits

1000

0000 1001

0100 0100
0010 0010
0001 0001
0100 1000

Twos-complement multiplication
o  Multiplication of

signed integers could
be done by multiplying
numbers and then
figuring out the sign.

o  However, the above
algorithm works for
twos-complement
provided we extend
the sign bit
appropriately.

Arithmetic 10-4

2

Fast multiplication

Arithmetic 10-5

32-bit ALU

32-bit ALU

32-bit ALU

32-bit ALU

Mplier1 * Mcand

Mplier2 * Mcand

Mplier3 * Mcand

Mplier31 * Mcand

Mplier0 * Mcand

product bits 31 - 0

. . .

1*1000 0*1000

0100

0

0010

0*1000

0

0001

1*1000

0

0100

1

product bits 63 - 32
Arithmetic 10-6

Division hardware

 ! 1001 Quotient
1000 1001010 Dividend
 - 1000!
 10!
 101!
 1010!
 - 1000!
 10 Remainder
!

Divisor

64-bit ALU

Remainder

Quotient

Control Write

Shift right

Shift left

64 bits

64 bits

1000 0000

0000

0100 1010

0100 0000

0000

0010 0000

0001

0000 1010

0001 0000

0010

0000 1010

0000 1000

0100

0000 1010

0100 1010

1001

0000 0010

Arithmetic 10-7

Refined version of division hardware

Divisor

32-bit ALU

Remainder Control
test

Write

Shift right

32 bits

64 bits

Shift left

Arithmetic 10-8

Representing reals
o  Numbers with fractions,

e.g., 3.14159265… (π).
o  Very small numbers, e.g., .

000000001 = 1.0 x 10-9
o  Very large numbers, e.g.,

3,155,760,000 = 3.15576
x 109

3

Arithmetic 10-9

Binary fractions
o  We can also show binary

numbers in normalized
scientific notation using
the notation:
 1.xxxx2 x 2yyyy

o  We now call the “.” symbol
the binary point. We also
call this format “floating-
point” because the binary
point is not fixed.

Arithmetic 10-10

Life is not also so easy
o  What if the fractional part is not an exact power of two? We

will need to approximate!

 2-1 = .12 = .510
 2-2 = .012 = .2510
 2-3 = .0012 = .12510
 2- 4 = .00012 = .062510
 2-5 = .000012 = .0312510
 2-6 = .0000012 = .01562510
 2-7 = .00000012 = .007812510
 2-8 = .000000012 = .003906310
 2-9 = .0000000012 = .001953110
 2-10 = .00000000012 = .000976610 etc…

o  Then, sum to the degree of precision necessary. For example,

what does .310 = ?

Arithmetic 10-11

Floating-point numbers:
 (-1)sign x fraction x 2exponent

o  A fixed word size means that there is a tradeoff
between accuracy and range:

o  more bits for fraction gives more precision of fraction
o  more bits for exponent increases range of numbers that can

be represented.

Arithmetic 10-12

IEEE 754 floating-point standard
o  Single precision

o  Double precision

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0!

s! exponent! fraction!

1 bit 8 bits 23 bits

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0!

s! exponent! fraction!

1 bit 11 bits 20 bits

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0!

fraction continued!

32 bits

4

Arithmetic 10-13

Water over (and under) the dam
o  Overflow is now the case

where the positive
exponent is too large to
be represented in the
exponent field.

o  But now there is also
underflow, i.e., the case
where the negative
exponent is too large to
fit in the exponent field.
In this case, the
fractional part has
become so small that it
cannot be represented.

Arithmetic 10-14

Some unpleasant details
o  Placing the exponent before the fraction simplifies sorting

of floating point numbers using integer comparison
instructions.

o  But, what about negative exponents? They “look” big
because the leading digit is a 1!

o  Exponent is “biased” to make sorting easier. The bias is
subtracted from the normal, unsigned value, to determine
the real value. Bias = 127 for single precision and 1023 for
double precision:
 (–1)sign x (1 + fraction) x 2exponent – bias

Arithmetic 10-15

So an IEEE engineer walks into a bar ...
 ... and orders
1.00000000001000000082740370999090373516082763671875
root beers. The bartender says, "I'll have to charge extra; that's a
root beer float". And the engineer says, "In that case, make it a
double."

 We order a -.7510 float and make it a double.

Arithmetic 10-16

Aaaahhhh!!!

5

Floating point multiplication:
 1.000 x 2-1 times -1.110 x 2-2

1.  Add exponent without bias:
 -1 + (-2) = -3!

2.  Multiple significants:
 1.000!
! ! x 1.110!
! ! ! 0000!
! ! 1000!

 ! ! 1000!
! ! 1000!
! 1.110000!

3.  Normalize and check for
overflow or underflow:
 1.110 x 2-3

Arithmetic 10-17

4.  Round the product:
 1.110 x 2-3

5.  Calculate sign of result:
 1 x (-1) = -1

Arithmetic 10-18

The infamous Pentium bug (1994)

