Laboratory 1 Notes
Introduction to MIPS/MARS
Computer = programmable information processing machine.

Major components = CPU, Memory, and Input/Output
[image: image1.png]- [r—
(2-1)
WiPS private reas -
ec [[wR[pfe ooooos [Ta T s
10010004 0 | W] o
—
IPS uaex ress ioatoooo[T [1 o [7]
$2070 [09[so]oa a0 -
sv0 0400008 Syscal
a0 osonnoi_ig Syt
o 0400000 T 4T
st0
sl 0000000«
$t2 mres . 0000008
550 G 0000004]
sl 10000000

 CPU: contains 32 user registers = storage for data within the CPU
 $zero

- Contains a value of 0

 $t0 - $t9

- Temporaries
 $s0 - $s7

- Saved
 $a0 - $a3

- Arguments

 $v0 and $v1

- Return values

The contents of these registers are used as operands in the program instructions. Although all these registers are general purpose (can be used to store any kind of data), there are conventions for typical usage, as indicated.

There are also 7 other registers with specific purposes that you will soon learn more about.

· Each register contains a 32-bit value (32-digit binary/base 2 number)
· A byte is an 8-bit unit, a word is a 4-byte or 32-bit unit.

· We often represent the values in hexadecimal (base 16), to be concise
$zero always contains a value of 0, which is stored in 32 bits:

 0000 0000 0000 0000 0000 0000 0000 00002 , is equivalent to
 0 0 0 0 0 0 0 016
Groups of 4 binary digits can easily be converted to hexadecimal:

Decimal
Binary
Hexadecimal
0

0000

0

1

0001

1

2

0010

2

3

0011

3

4

0100

4

5

0101

5

6

0110

6

7

0111

7

8

1000

8

9

1001

9

10

1010

A

11

1011

B

12

1100

C

13

1101

D

14

1110

E

15

1111

F

Another example of binary to hexadecimal conversion:

 0010 0100 0011 0101 1000 1100 0001 11112 , is equivalent to

 2 4 3 5 8 C 1 F16
Memory:
There are 232 – 1 locations or addresses in memory in which a byte (8 bits) of information can be stored.

 The locations can contain data or program instructions (although these are shown as pnemonics below, they are actually stored as numeric values).

Each instruction in MIPS is 32 bits (one word) long.

[image: image2.png]- [r—
(2-1)
WiPS private reas -
ec [[wR[pfe ooooos [Ta T s
10010004 0 | W] o
—
IPS uaex ress ioatoooo[T [1 o [7]
$2070 [09[so]oa a0 -
sv0 0400008 Syscal
a0 osonnoi_ig Syt
o 0400000 T 4T
st0
sl 0000000«
$t2 mres . 0000008
550 G 0000004]
sl 10000000

	Address
1004000016

1001000016

0040000016

0000000016
	Memory Usage in MARS

 Heap and Stack (learn more later)

	
	
 Data Segment (Data with fixed size)

	
	
 Text Segment (Program Instructions)

	
	

 Reserved

MIPS instructions for use in Lab today
· Arithmetic (R-type) Instructions

 add $t3,$t1,$t2 # add, $t3 <- contents of $t1 + contents of $t2

 addi $t3, $t1,5 # add immediate,$t3 <- contents of $t1 + 5
· Memory Access Instructions

 lw $t1,label # load word, $t1 <- value of word stored at

 memory address/location specified by label

 lw $t1,3($s0) # load word, $t1 <= value of word stored at

memory address (base address in $s0 + 3)

 sw $t1,label # store word, stores value of word in $t1 to

address/location in memory specified by label

 (lw and sw can also be byte or halfword, i.e. lb, lh, sb,sh)
· Pseudo-instructions –not part of the basic MIPS instruction set, but used for programmers convenience. These instructions translate to basic MIPS instructions when the program is assembled (but those basic instructions are not as intuitive from a programmers perspective).

 li $t1, 3
 # load immediate, $t1 <- 3

 la $s1, label # load address, $s1 <- address corresponding to label
 move $t1,$t2 # move, move contents of $t2 to $t1
Directives – are not instructions, but you use them in your program to tell the assembler how to store your program in memory

.text

.globl main

Precedes your text segment (program instructions), and

specifies main as a global symbol (recognized by other

files in a multi-file project

.data

Precedes your data segment (data declarations)

(text segment can come before data segment, or vice versa)

.ascii “string”

Defines a string of characters (each character is stored as

a 1-byte ascii value)

.asciiz “string”
Defines a null-terminated string (ends with a null byte)

.byte b0,b1,b2

Defines and initializes subsequent bytes in memory

.half
h0,h1,h2

Defines and initializes subsequent half-words (16-bit

values – alignment forced to next even address

.word w0,w1,w2

Defines and initializes subsequent words (32-bit values)

– alignment forced to next word address (multiple of 4)

.space n

allocates n bytes of space, usually initialized to 0
SYSCALL functions overview

System services used for input/output

How to use SYSCALL system services

1. Load the service number in register $v0.

2. Load argument values, if any, in $a0, $a1, or $a2

3. Issue the SYSCALL instruction.

4. Retrieve return values, if any, from result registers

Table of Commonly Used Services

	Service
	$v0
	Arguments
	Result

	print integer
	1
	$a0 = integer to print

	

	print

string
	4
	$a0 = address of null-

terminated string to print
	

	read

integer
	5
	
	$v0 contains

integer read

	read

string
	8
	$a0=address of input buffer

$a1=max. # of chars. to read
	

	exit (stop

execution)
	10
	
	

	print character

	11
	$a0=character to print
	

	read character

	12
	
	$v0 contains

character read

	open

file

	13
	$a0=address of null-terminated string containing filename

$a1=flags

$a2=mode
	$v0 contains

file descriptor

(- if error)

	read

from file

	14
	$a0 = file descriptor

$a1=address of output buffer

$a2=max. # of chars to read
	$v0 contains

of chars. read (0=EOF,- if error)

	write

to file
	15
	$a0 = file descriptor

$a1=address of output buffer

$a2= # of chars to write
	$v0 contains #

chars. written

(- if error)

	close

file
	16
	$a0 = file descriptor
	

Examples of Simple I/O for lab today

print an integer

li $v0,1
load service number into $v0

li $a0,5
load value to be printed into $a0
syscall

#print a null-terminated string

li $v0,4
#load service number in $v0

la $a0,prompt_string

load address of string to be printed into $a0

syscall # the null-terminated string must also be defined in the data
segment!


.data

prompt_string: .asciiz “Enter a value: “

read in an integer

li $v0,5
#load service number in $v0

syscall
#the value entered by the user is returned in $v0

move $t0,$v0
#store value entered into another register

read in a string

li $v0,8

#load service number in $v0
la $a0,answer
#put address of answer string in $a0

lw $a1,alength
#put length of string in $a1

syscall

#answer and alength must be defined in data
segment!

.data

answer: .space 50 # allocate space for string to be stored

alength: .word 50 #length of string to be entered

terminate execution of program
#should always be the final instructions executed in program

li $v0,10 #load service number in $v0

syscall
