
Laboratory 10
Control Path, Single-Cycle and Pipelined CPU

Data Path with Data Memory

Instruction Opcode RegDst RegWr ALUSrc MemRd MemWr MemtoReg
LW 0000 1 1 1 0 1 1
SW 0001 1 0 1 1 0 0
ADD 0010 0 1 0 1 1 0
SUB 0011 0 1 0 1 1 0
AND 0100 0 1 0 1 1 0
OR 0101 0 1 0 1 1 0
SLT 0110 0 1 0 1 1 0
BEQ 0111 0 0 0 1 1 0
JMP 1000 0 0 0 1 1 0

Control Logic for the ALU

ALU can perform 5 possible operations:

ALUop ALU function
0 a AND b
1 a OR b
2 a + b (add)
6 a - b
7 set on less than

Need an ALU Control Unit to select the proper operation for each instruction:

Instruction Opcode ALU operation ALUop
LW 0 add 2
SW 1 add 2
ADD 2 add 2
SUB 3 sub 6
AND 4 and 0
OR 5 or 1
SLT 6 slt 7
BEQ 7 sub 6
JMP 8 don’t care don’t care

In binary:

Op3 Op2 Op1 Op0 ALUop3 ALUop2 ALUop1 ALUop0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 0
0 0 1 1 0 1 1 0
0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 1
0 1 1 0 0 1 1 1
0 1 1 1 0 1 1 0

Use a 3x8 decoder to produce the ALUop

Control Unit

Must provide control signals for all other devices in datapath (MUXs, Regfile, Data Memory)

Instruction Opcode RegDst RegWr ALUSrc MemRd MemWr MemtoReg
LW 0000 1 1 1 0 1 1
SW 0001 1 0 1 1 0 0
ADD 0010 0 1 0 1 1 0
SUB 0011 0 1 0 1 1 0
AND 0100 0 1 0 1 1 0
OR 0101 0 1 0 1 1 0
SLT 0110 0 1 0 1 1 0
BEQ 0111 0 0 0 1 1 0
JMP 1000 0 0 0 1 1 0

Can produce with logic gates or a 4x16 decoder (two 3x8 decoders)

Programming the Single-Cycle CPU

Mini-MIPS program which loops repeatedly to access memory:

Address Instruction Meaning
0: 5002 OR R0 R0 R2 #R2 gets 0

2: 5003 OR R0 R0 R3 #R3 gets 0

4: 1220 SW R2 R2 0 #address n: gets n (start of loop!)

6: 0230 LW R2 R3 0 #R3 gets n

8: 2122 ADD R1 R2 R2 #R2 gets R2 + 1

A: 8002 JUMP 002 #jump to 2*2 (address 4) = beginning of loop

Trace execution:

 R2 R3 Memory Address Value
0:
2:
4:
6:
8:
A:
4:
6:
8:
A:
4:
6:
8:
A:
4:
6:
8:
A:

Another Example

Assume two values are stored in data memory at address 0 and 2.

Subtract the value at address 2 from the value at address 0, and store the result in address 4:

0: LW R0 R2 0

2: LW R0 R3 2

4: SUB R2 R3 R2

6: SW R0 R2 4

Mini-MIPS in LogicWorks

Procedure to Load/Execute a New Program

1. Disconnect the address bus of the Instruction Memory from the CPU
2. Set LOAD = 0

3. Set address and data switches for instruction
4. Set WR = 0, then back to 1
5. Repeat steps 3 and 4 until all instructions are loaded to memory

6. Set LOAD = 1
7. Reconnect address bus to CPU

8. Set Reset = 1, then back to 0
9. Set CLK = 1, then back to 0, for each instruction.

Single-Cycle CPU

May be made into a pipelined circuit by inserting registers at the pipeline stages:

Data Hazards

A data hazard is when an instruction uses a register which is being written to by an earlier
instruction which is still in the pipeline. Therefore, the new value of the register is not yet
available in the Execute stage of the later instruction which requires it.

The following diagram shows the additions to the pipeline to deal with data hazards:

As an example, there is a data hazard in both the SUB and SLT instruction below because of R2.

ADD R1 R1 R2
SUB R2 R1 R3
SLT R2 R1 R4

There are two types of hazard conditions:

Rs or Rt from the current instruction are getting a new value from the previous instruction

1a. EX/MEM.RegisterRd = ID/EX.RegisterRs
1b. EX/MEM.RegisterRd = ID/EX.RegisterRt

Rs or Rt from the current instruction are getting a new value from 2 instructions earlier

2a. MEM/WB.RegisterRd = ID/EX.RegisterRs
2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

We can solve this problem for register-type instructions by forwarding the register value back
to the Execute stage. An additional MUX in the Execute stage (controlled by a Forward
signal) chooses one of the three possible sources for the A and B sides of the ALU:

ForwardA/B Source Explanation
00 ID/EX Forwarding not required, use Reg from ID/EX (register file)
10 EX/MEM Forwarding required from previous instruction, use Reg from EX/MEM (ALU)
01 MEM/WB Forwarding required from data memory or from 2 instructions previous,
 use result from MEM/WB (value to be written back to register file)

if (EX/MEM.RegWrite and
 (EX/MEM.RegisterRd > 1) and
 (EX/MEM.RegisterRd = ID/EX.RegisterRs)) then

ForwardA = 10

else if (MEM/WB.RegWrite and
 (MEM/WB.RegisterRd > 1) and

(EX/MEM.RegisterRd ≠ ID/EX.RegisterRs) and
(MEM/WB.RegisterRd = ID/Ex.RegisterRs)) then

ForwardA = 01

else
 ForwardA = 00

The same conditions must be tested for Rt , producing ForwardB. The forwarding unit which
produces ForwardA and ForwardB can be implemented with simple logic

Stalls

Forwarding alone is not effective if an instruction tries to use a register following a lw
instruction that writes the same register, because the memory access comes so late in the
pipeline that the value read from the memory is not yet available to be forwarded back to the
Execute stage.

This hazard can be detected by testing the following condition in the ID stage:

if (ID/EX.MemRead and
 ((ID/EX.RegisterRt = IF/ID.RegisterRs) or (ID/EX.RegisterRt = IF/ID.RegisterRt)))

When this hazard occurs, a stall, or nop (no operation) is needed in the ID and IF stage to wait
for the result of the lw to be written before the next instruction is executed.

This is accomplished by preventing the PC and the IF/ID registers from changing.

It is also necessary to deassert the control bits in the ID stage. This causes the next pipeline
stages to “do nothing”; no registers are written and no memory accesses occur if the control
bits are not asserted.

Some simple logic and an additional MUX in the ID stage are all that are necessary to
implement the hazard detection unit and clear the control bits.

Are there any hazards in this code?

SW R0 R1 0
ADD R1 R1 R2
SLT R0 R1 R3
SUB R1 R0 R4
ADD R1 R1 R5
LW R0 R6 0
ADD R1 R1 R7
SLT R0 R1 R8
SUB R1 R0 R9
ADD R1 R1 RA
ADD R6 R6 RB

