Virtual Memory Statistics

Computer Science 240

Laboratory 13

In the following lab exercise you will observe the effect of memory-intensive process execution, memory frame allocation policies, and page replacement algorithms by observing system reports of virtual memory statistics.

Virtual Memory Performance Statistics

Exercise 1: Use some Linux utilities to examine the virtual memory configuration of a specific machine.

1. Assume the lab machine is booted to CentOS instead of Windows. Log in using:

username: luser

password: (instructor will give you password)

2. Open a shell by selecting Applications->System Tools->Terminal
Two utilities, vmstat and free, display statistics about the virtual memory of the current system.
3. Examine the manual pages to learn more about the types of information provided by these utility programs.
4. Use free at the command prompt with the correct options to determine:
· The total amount of physical memory (KB) on your system
· The amount of free memory
· The total amount of the swap space
 Use getconf to determine the page size on your machine:

$ getconf PAGESIZE

 Record the page size :

Memory Demands of a Process

Exercise 2: Examine the effects of running a specific process on your machine.

1. Study the sample program (sample.c):
1. #include <stdio.h>
2. #include <stdlib.h>
3.

4. const size_t SIZE = 2 * 1024U; /* U suffix: unsigned int */
5. #define LOOP 100
6.

7. int main()
8. {
9. int i, j;
10. int count, *intPtr;
11.

12. printf ("On this machine, an int takes %lu bytes\n", sizeof(int));
13. /* allocate a 2D array */
14. intPtr = malloc(SIZE * SIZE * sizeof(int));
15.

16. if (intPtr == NULL) {
17. perror ("Out of space");
18. exit (1);
19. }
20. for (count = 0; count < LOOP; count++)
21. for (i = 0; i < SIZE; i++)
22. for (j = 0; j < SIZE; j++)
23. intPtr[i*SIZE + j] = i * j * count;
24. free (intPtr);
25. return 0;
26. }
27.
How much memory (in bytes) is allocated to the 2D array “intPtr”? How many pages are needed to hold this 2D array?

2. Create the source file sample.c using the emacs editor. Compile and run the program (once) to prime the system:
$ gcc –o sample sample.c
$./sample

3. Configure and start vmstat to display statistics once per second; let the system stabilize.
 Memory is listed using several fields/categories, including "buffers" and "cache". In general, these are memory reserved for (non-swap) disk I/O to speed up I/O processing. Buffers hold data read from disk, so future read requests of the same data can be retrieved faster. Caches are output buffers that hold data intended to go to disk; these caches are flushed in background.
 Which field describes the amount of idle memory? (This number should approximate the free memory reported by the free command).

5. Open another shell, and execute the sample program again.
Approximately how much does the amount of idle memory change?

Memory Demands of Competing Processes

Exercise 3: Examine what happens when the memory demand of multiple processes exceeds the amount of idle memory available.

1. Calculate and adjust the SIZE parameter in the sample program to a number that causes the total memory demand of two or more instances of the program to exceed the amount of idle memory on your machine (this number should not exceed the amount of physical memory on your system). You will also need to reduce the LOOP parameter to around 10.
2. Configure and start vmstat to display statistics once per second; let the system stabilize

3. In another shell, execute the sample program in the background.
4. Execute more copies of the sample program to increase the overall memory demand of the system. The goal here is to make these processes consume all the available memory. If you are getting the "Out of space" error, adjust the SIZE parameter to a lower number
5. Observe what happens to the amount of idle memory.

 Given the results from the previous experiment, is this what you expected?

What other memory fields change, and by what approximate amount?

Explain why these fields have changed (i.e. how is the system adapting to the increased memory demand?).

Changing the Memory Access Pattern
Exercise 4: Modify the memory access pattern of the program by "rearranging" its instructions.

1. Restore the SIZE and LOOP parameters to their original values

2. Read the man page of time utility program and learn how to use the utility to show the number of minor page faults.

3. Use the /usr/bin/time program to monitor the number of minor page faults of the sample program
How many minor page faults is the program experiencing?

Explain why this is what you would expect, given the structure of the sample program and the size of the 2D array.
4. Change the memory access statement in the sample program to read:

 intPtr [j*SIZE + i] = count * i * j;

and recompile the program.
How will this change alter the program’s memory access pattern? (Compare the memory references of the original and the modified program).

Predict how this change will affect the execution time.

5. Execute the program to verify whether your prediction is correct.
6. Change the memory access statement in the sample program to read:

 val = intPtr [i*SIZE + j];

and recompile the program.
How will this change affect the program’s behavior compared to the original sample program

Predict how this change will affect the execution time.

7. Execute the program to verify your prediction.
Acknowledgement

This lab was originally prepared by Prof. Greg Wolffe of Grand Valley State University for his CIS452 Operating Systems class. The original content has been modified.
