2
1

Laboratory 2

More on MIPS
Computer Science 240

MIPS Review

Debugging
Exercise 1 – 1: Download the lab2-1.asm file from the Lab Google Group. It contains a program that should output:

The code is: 8
Now it is: 9
If you have not selected the checkbox to Show Line Numbers in the Edit window, you will want to select that option to assist you in debugging.

Try to assemble, and examine the error messages listed.

Once you have corrected the syntax errors using the error messages, and can assemble the program, try to run it.

2. Describe and explain the run-time errors that occur.

3. Modify the program to get the expected output. Add comments to the corrected program. Copy the code from MARS and paste it here:

 Storage allocation and program execution
Exercise 2 - 1. Predict the address and data contents of the following data segment from lecture .

	
.data

str:
.byte

1,2,3,4

.half

5,6,7,8

.word

9,10,11,12

.space

 5

.word

9,10,11,12

letters:
.asciiz

“ABCD”

.ascii

“ABCD”

.byte

-1

· Use little-endian byte order

· Show one word (4 bytes) per row.

· Lowest address (0x10010000) should be at bottom of stack.

· Label the addresses corresponding to str and letters
· Use hexadecimal notation

	Address Label
0x10010000
	Data

	
	

2. Predict how the values of $a0 and $t0 change as each instruction is executed, and answer the stated questions:

 $t0
 $a0

 0x00000000 0x00000000

main:
li $v0,11

li $t0,2

lb $a0,letters($t0)

syscall

What is the result of the syscall?

addi $a0,$a0,-1

syscall

What is the result of the syscall?

addi $t0,$t0,1

lb $a0,letters($t0)

syscall

What is the result of the syscall?

li $t0,’Z’

sb $t0,letters

lb $a0,letters

syscall

What is the result of the syscall?

Update the memory diagram above to show what happens after the sb $t0,letters is executed.

li $v0,10

syscall

3. Download lab2-2.asm from the Lab Google Group and single-step the program to verify your results. Examine the Data Segment to check that your storage allocation diagram is correct.

Exercise 3: Write a MIPS program which does the same thing as the following Java statements.

//initialize only these two strings in memory

String phrase = “Change: inevitable”;

String addon = “ except from vending machines”;

//should output the string ‘Change: inevitable’
System.out.println(phrase);

//should output ‘Change: inevitable except from vending machines’ with a single syscall

phrase = phrase.concat(addon);

System.out.println(phrase);

//should output ‘Charge!’
phrase = phrase.replace(‘:’,’!’);

phrase = phrase.substring(0,7)

phrase = phrase.replace(‘n’,’r’);

System.out.println(phrase);

Copy the code from MARS and paste it here:

 Numeric representation

Exercise 4: On paper, perform addition on the following binary and hexadecimal numbers (assume two’s complement format!). Indicate whether there is a carry-out or an overflow for each addition.
 Hex
Binary Hex Binary
0 0000
8
1000

1 0001
9
1001

2 0010
A
1010

3 0011
B
1011

4 0100
C
1100

5 0101
D
1101

6 0110
E
1110

7 0111
F
1111

1. For the first 2 calculations, assume 16- bit representation. Do the calculation using the binary values.

Then, convert the numbers for the operands and result to hexadecimal notation (to convert, divide the digits into groups of 4, and translate each group to the corresponding hexadecimal value).

Carry-Out?
Overflow?_

Hexadecimal Value

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

+ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

+ 0 1 1 1 1 1 1 1 1 0 0 1 1 0 0 1

2. Now, assume 32-bit representation. The numbers are given are in hexadecimal notion.

Carry-Out?
Overflow?_

 0x A A F F 9 0 1 4
 + 0x A A E 3 C D 1 2

 0x 7 F A A 3 2 7 8
 + 0x 6 0 2 4 C D 1 2
3. Use MARS to write a very simple program that adds the contents of $t0 and $t1, and puts the result in $t2:

.text

.globl main

main:
add $t2,$t0,$t1
add contents of $t0 and $t1, and store result in $t2

li $v0,10

terminate execution

syscall

After assembling the program (but before executing), enter the values for $t0 and $t1 directly into the Registers panel. Use the 32-bit hexadecimal values from the previous exercise:

 0x A A F F 9 0 1 4
 + 0x A A E 3 C D 1 2

Verify that your result from the calculation was correct by observing the result in $t2 from the Registers panel after executing the program.
4. Now, reset the program, but this time enter the second set of 32-bit values from the previous exercise before running the program:

 0x 7 F A A 3 2 7 8
 + 0x 6 0 2 4 C D 1 2

Execute the program. Describe what happens:

More on System Calls

Copy the source from MARS and paste here for the following exercises that you complete:
Reading from a file
Exercise 5: You have seen how to read a string or an integer from the keyboard using a system call. You can also read characters from a file, using system calls for opening, reading from, and closing a file (in MARS, read more about these from the Help menu Syscalls tab).

1. Download the program test.asm and lab2-3.asm from the Lab Google Group. The test.asm file contains characters which will be read by the MIPS program in lab2-3.asm.
2. Put test.asm and lab2-3.asm files in the same place as the Mars.jar executable file. One easy way to do this is to download Mars.jar to the desktop, and then keep your files on the desktop, as well.
3. Open lab2-3.asm in MARS; it contains a code skeleton which opens a file for reading, and then closes it. Study the code in the main program listed below to make sure you understand its purpose:

.data

filename:
.space 32

fnlength:
.word 9

prompt1:
.asciiz "Enter a filename: "

.text

li $v0,4

#prompt user for filename

la $a0,prompt1

syscall

li $v0,8

#read in filename string &

la $a0,filename

 #store in memory

lw $a1,fnlength

syscall

li $v0, 13

 #open file

la $a0,filename

 #$a0 = addr of filename string

li $a1,0

 #set mode to read

li $a2,0

syscall

move $s6,$v0

 #save file descriptor in $s6

#put code here to read a character from the file

#put code here to print the character to the console

close_file:

li $v0, 16
#close the file

move $a0,$s6

syscall

donemain:

li $v0,10

#exit

syscall

4. To add the code to read a character from the file, follow the syscall contract for reading from a file.
HINT: you will need to define a location in memory (input_buffer) to hold the character, similar to what you do to read a string from the keyboard.

syscall contract for reading from a file

$v0 arguments

 result

	14
	$a0 = file descriptor
$a1 = address of input_buffer
$a2 = maximum number of characters to read
	- input buffer contains character read in

- $v0 contains number of characters read (0 if end-of-file, -1 if error)

 5. After you read in a character, store the character in $t1 and print it to the console using the print character system call (service code 11).
 The first character in test.asm is ‘#’, so that is the character you should see printed.

 At that point, you could continue to read the rest of the characters from the file by repeating the code to print in a character (such as with a loop, as we will learn about next week in lecture).

 How do you think you will know when you have read in all the characters from the file?

6. Add code which checks whether the character read in is alphabetic (upper or lowercase). Use the following contract:

· Assume the character to be tested is still in $t1 after reading it in from the file.

· After testing $t1, set $s3 = 1 if the character is alphabetic, and 0 otherwise.

Test by running the program, and examining the value of $s3 after execution. Modify the test.asm file several times, changing the first character to various values, and running the program each time to determine if your test works correctly for a variety of characters.

Printing hex, binary, or unsigned integer values
Exercise 6: Write a MIPS program that prompts for an integer number, and then displays the hexadecimal, binary, and unsigned versions of the number (look up system calls 34 – 36). You may find this helpful for checking your work when you are doing numeric representation exercises.

Generating audible tones (making music)
Exercise 7: Write a MIPS program that plays a song! Experiment with system call 33. Be creative!
Partners:

