Laboratory 3

Conditional Execution and Procedures

Computer Science 240

In lab this week, you will continue to study MIPS, and you will experiment with conditional execution using branching and jumping instructions.

Read from a file
Exercise 1: In this exercise, you will implement some procedures to read from a file, which will give you practice with loops and procedures. The files are available from the Google group.
You will be using the tiny.asm file as test input to your main program. It should contain the following:

this is a test program in mini-MIPS
main

add $2,$1,$1

add $3,$0,$2

add $3,$3,$3

add $4,$3,$0

loop

beq $3,$0,done
 #here is the loop

sub $3,$3,$1

j loop

done

sw $2,0($0)

lw $a,-2($4)

NOTE: The very last character in the file is a line-feed. This is necessary to detect the end of the file!

Also note that you cannot assemble this file using MARS because it is not MIPS (even though it seems very similar).
Tasks

1. Download the program tiny.asm and lab3-3.asm from the course conference.

2. Put tiny.asm file in the same place as the Mars.jar executable file (for example, both could be on the Desktop or both could be in the Downloads folder)
3. Open lab3-3.asm in MARS; it contains a code skeleton to get you started (some of you experimented with this code at the end of lab 2). Study the code to make sure you understand its purpose.

.text

.globl main

main:

li $v0,4

#prompt user for filename

la $a0,prompt1

syscall

li $v0,8

#read in filename string &

la $a0,filename
#store in memory

lw $a1,fnlength

syscall

li $v0,11

#print a linefeed to the console

li $a0,10

syscall
li $v0, 13

#open file

la $a0,filename
#$a0 = addr of filename string

li $a1,0
 #set mode to read

li $a2,0

syscall

move $s6,$v0
#save file descriptor in $s6

#this code reads in a character from the file and puts it in $t1

li $v0,14

move $a0,$s6

la $a1,inchar

li $a2,1

syscall

lb $t1,inchar

#print the character to the console

li $v0,11

move $a0,$t1

syscall

close_file:
li $v0, 16

#close the file

move $a0,$s6

syscall

donemain:
li $v0,10

#exit

syscall

.data

filename:
.space 32

fnlength:
.word 9

prompt1:
.asciiz "Enter a mini-MIPS filename: "

inchar:
.space 1

4. Run the program; it should read in the first character in tiny.asm, store the character in $t1, and print it to the console (it should be ‘#’). Don’t go further until this works correctly.

Write a procedure

Exercise 2: Write a procedure readchar with the following contract:

The procedure readchar will read in one character from a file.

$s6 is an input which contains the file descriptor

#

$t1 is an output which contains the character read in

#

$v0 is an output set by the syscall,$v0=0 if no character is

found (i.e. end of file)

Tasks

1. The definition for the procedure readchar should come after the end of the main program.

2. Include a header comment very similar to the contract listed above!

3. You should save and restore the $ra on the stack in this procedure (and all others you will write); it is essential if there are nested procedure calls!

4. Cut the code for read character from the main program (only the code for reading the character!) and paste it into your readchar procedure.

5. Your procedure must end with:

jr $ra
6. Replace the read character code you cut in the main program with a call to readchar:

jal readchar
7. Run the program, and verify the first character ‘#’ is still being printed.

NOTE: It is important to maintain the value of the file descriptor (use $s6 for this purpose in your program) until the entire file is read in, since it always points to the next character in the file to be read in.

Add a loop to read all characters

Exercise 3: Add a loop in the main program so that the program will repeat reading in characters from the file until a an end-of-file is detected. You should see all the characters from the file echoed to the console at this point.

Copy and paste your MIPS source code from MARS to here:
More Loops and Procedures

Exercise 4: The following is a sample of a program output given the inputs 1 - 5:

Enter an integer: 1

Enter an integer: 2

Enter an integer: 3

Enter an integer: 4

Enter an integer: 5

Enter an integer: 0

The sum = 15

Write a program which uses a loop to accept an unspecified number of integer inputs and calculates the sum of the entries. When a value of '0' is entered by the user, output the result and exit the program.

Copy and paste your MIPS source code from MARS to here:

Recursive Procedure

Exercise 5: The previous problem can also be solved recursively. One recursive solution in Java is:
import java.io.*;

public class NumOps {

 private static Scanner scan = new Scanner(System.in);

 public static int getAndSumValues() {

System.out.println(Enter an integer:);

int n = scan.nextInt();

if (n == 0)

 return 0; //base case

 else

 return n + getAndSumValues();

 }

 public static void main (String[] args) {

int sum = getAndSumValues();

System.out.println(“The sum = “ + sum);

 }

}
1. In MIPS, the recursive version might look like this. Add comments to explain the code.

.text

.globl main
main:
jal getAndSumValues

move $t0,$v0

li $v0,4

la $a0,answer

syscall

li $v0,1

move $a0,$t0

syscall

li $v0,10

syscall

getAndSumValues:

addi $sp,$sp,-8

sw $ra,4($sp)

li $v0,4

la $a0, prompt

syscall

li $v0,5

syscall

sw $v0,0($sp)

bne $v0,$zero,recurse

addi $sp,$sp,8

jr $ra

recurse: jal getAndSumValues

 lw $t0,0($sp)

 lw $ra,4($sp)

 addi $sp,$sp,8

 add $v0,$t0,$v0

 jr $ra

.data

prompt: .asciiz "Enter an integer: "

answer: .asciiz "The sum = "
- What makes getAndSumValues a recursive procedure?
 - How is the stack used to accumulate the sum?

 - How is the value returned to the main program?
2. Open lab3-1.asm in MARS. It contains the above program. Execute the program with the following values:

Enter an integer: 1
Enter an integer: 2

Enter an integer: 3

Enter an integer: 4

Enter an integer: 5

Enter an integer: 0

The sum = 15
3. After running the program, examine the stack data in your Data Segment window:

· select current $sp from the pull-down menu that normally displays the Data Segment from your program.
· Adjust the range of addresses displayed using the right arrow icon and the scroll bar. There should be 11 non-zero values.
 [image: image1.png]2147479808 0x00000000 0x00000000 0x00000000
2147479840 0x00000000 0x00000000] 0x00000000
2147479872 0x00000000 0x00000000 0x00000000
2147479908 0x00000° " < = ~==~gggga

2147479936 0xo000g 010000000 (extern) on0q
2147479968 0x00004 current Sgp booao
1a7a00an ouannod 0x10010000 (data)

0x10040000 (heap)
EY current ssp

0x90000000 (kdata)
0xffff0000 (MMIO)

Go: running looprec.asm

4. Record the values placed on the stack as a result of running your program:

	0xffffeff8

0x7fffeff4

0x7fffeff0

0x7fffefec

0x7fffefe8

0x7fffefe4

0x7fffefe0

0x7fffefdc

0x7fffefd8

0x7fffefd4
0x7fffefd0
	

5. Explain the meaning of the values on the stack:
6. Run your program and single-step execution while viewing the stack data, to understand how the data is placed on the stack.
Mystery Program

Exercise 6: Given the following MIPS program, write a Java program which accomplishes the same task

NOTE: Do NOT run the program in MARS to figure out what it does! Figure it out on paper, and add comments to the code below to explain what is happening.

.data

prompt_string: .asciiz "Enter a value: "

result_string:
.asciiz "Results:\n”

lf:

.asciiz "\n"

.text

.globl main

main:

 li $v0,4

la $a0,prompt_string

syscall

li $v0,5

syscall

move $v1,$v0

move $a1,$v0

li $v0,4

la $a0,result_string

syscall

jal mystery

li $v0,10

syscall

mystery:
addi $sp,$sp,-4

sw $ra, 0($sp)

beq $v1,$zero,label_2

div $a1,$v1

mfhi $t0

bne $t0,$zero,label_1

li $v0,1

move $a0,$v1

syscall

li $v0,4

la $a0,lf

syscall

label_1:
 addi $v1,$v1,-1

jal mystery

label_2:
lw $ra,0($sp)

addi $sp,$sp,4

jr $ra

Write your Java code here:

Factorial

Exercise 7: The following program calculates the factorial of a value, using a recursive procedure:

.data

prompt1: .asciiz
“Enter a value: “

prompt2: .asciiz
“The result is: “

.text

main:
li
$v0,4

prompt the user for n

la
$a0,prompt1

syscall

li
$v0,5

#read n into v0

syscall

move
$a0,$v0

#store n in a0

jal
fact

#call the recursive procedure

move $t0,$v0

#n! is returned in $v0

li
$v0,4

#output the result

la
$a0,prompt2

syscall

li
$v0,1

move
$a0,$t0

syscall

li
$v0,10

#exit

syscall

recursive procedure to calculate the factorial of n. n is passed in $a0, and n! is returned in $v0

fact:
addi
$sp,$sp,-8
#adjust stack for 2 items

sw
$ra,4($sp)
#save the return address

sw
$a0,0($sp)
#save the argument n

slti
$t0,$a0,1
#test for n < 1

beq
$t0,$zero,next
#if n >= 1, go to next

addi
$v0,$zero,1
#otherwise, return 1

addi
$sp,$sp,8
#pop 2 items off stack

j end

#go to the end

next:
addi
$a0,$a0,-1
#decrement n

jal
fact

#recursive call to fact

lw
$a0,0($sp)
$restore n from stack to $a0

lw
$ra,4($sp)
#restore return address from stack to ra

addi
$sp,$sp,8
#pop 2 items off stack

mul
$v0,$a0,$v0
#return n * fact(n-1) in v0

end:
jr
$ra

#return from procedure
1. Finger-execute the program, and record the contents of the stack to understand how the stack is used, using the following notation:

· Assume the diagram below represents the stack before execution of the main program. Each row in the stack represents a word. The initial $sp with a subscript of 0 is pointing to the top of the stack.

· Trace the effect on the stack of executing each instruction in the program by moving the position of the $sp when it changes, (incrementing the subscript for each new value), and by recording new values on the stack as they are stored there.
· When the stack starts to empty, continue with the same notation, except use the right hand side of the stack diagram to indicate the changes.

· Also record changes to registers $v0, $a0, $ra, and $sp using the table which is given. Start a new row each time a register changes value. Only update the register with the new value in each row (don’t re-write values that have not changed).
Assume that initially, both $v0 and $a0 = 4 (we are calculating 4!)

	
Address
[400018] move $a0,$v0

[40001C] jal fact

[400020] move $t0,$v0

.

.

 .

[400048] fact: addi $sp,$sp,-8
[40004C] sw $ra,4($sp)

[400050] sw $a0,0($sp)

[400054] slti $t0,$a0,1

[400058] beq $t0,$zero,next

[40005C] addi $v0,$zero,1

[400060] addi $sp,$sp,8

[400064] j end

[400068] next: addi $a0,$a0,-1

[40006C] jal fact

[400070] lw $a0,0($sp)

[400074] lw $ra,4($sp)

[400078] addi $sp,$sp,8

[40007C] mul $v0,$a0,$v0

[400080] end: jr $ra

	$sp0---------------(

	$v0 $a0 $ra $sp
4

4

00000000
7ffeffc

2.Open lab3-2.asm in MARS. It contains the recursive factorial program from above.

· Set breakpoints at the first instruction of the fact procedure, and at the last instruction in the fact procedure.

· Run the program with a value of ‘4’ and use MARS to examine the stack each time the first breakpoint (at the beginning of fact) is reached.

· The first time that the second breakpoint (at the end of fact) is reached, the recursion begins to unwind. Note the value of $v0 each time this breakpoint is hit.

· Does what you observe agree with your predicted stack diagram and register values from earlier?

