

Laboratory 3 Notes

Conditional Execution and Procedures

MIPS Branching Instructions

beq $rs, $rt, label #if $rs = $rt, $pc = label (which means the next

instruction is at the address specified by label)

bne $rs,$rt, label #if $rs != $rt, $pc = label

MIPS Branching Pseudo-Instructions

 blt $rs, $rt, label #branch if $rs < $rt

 bgt $rs, $rt, label #branch if $rs > $rt

 ble $rs, $rt, label #branch if $rs <= $rt

 bge $rs, $rt, label #branch if $rs >= $rt

MIPS Unconditional Branch (Jump)

j label #$pc = label (jump to address specified by label)

Conditional Exectution/If Statements

If $t0 is ‘0’,
 perform task1 and continue with the next section of code.
else
 perform task2 and continue with the next section of code.

In Java:

 if ($t0 == 0) {
 /* code to perform task 1 */
 }
 else {
 /* code to perform task 2 */
 }
 next: /* code for the next section of the program */

In MIPS:

 bne $t0,$0, task2

 # code to perform task1

 j next

task2: # code to perform task1

next: #code for the next section of the program

Conditional Execution/Loops

$t0 contains a loop counter; repeat the code in the loop as long as $t0 is not ‘0’

In Java:

 for ($t0 = initial_count; t0>0; t = t-1) {
 /* code for body of loop */
 }
loopdone: /* code following the loop */

In MIPS

 loop: beq $t0,$0, loopdone #test loop counter, exit
 loop if counter = 0

 #code for body of the loop

 addi $t0, $t0,-1 #decrement loop counter
 j loop #repeat loop

loopdone: #code following the loop

 Stack

simply a section of main memory reserved for stack operations

Initial state of the stack

$sp=0x7fffeffc

Push a word-size value in $t0 on the stack.

Assume $t0 = 0x02030405

addi $sp,$sp,-4 #$sp = $sp – size in bytes of
 value (make room on the stack)

 sw $t0,0($sp) #store the value on the stack

 $sp=0x7fffeff8

 0x02030405

Initial State of Stack

 $sp=0x7fffeff8

Pop a word-size value from the stack.

lw $t1,0($sp) #read the word from the stack
 $t1 = 0x020304 as a result

addi $sp,$sp,4 #$sp = $sp + size in bytes of
 value (deallocate stack)

$sp=0x7fffeffc

 0x02030405 0x02030405

 Instructions used for Procedures

jal (jump-and-link)

jal procedure #puts the address of the instruction
 following the procedure call in $ra, and
 puts the starting address of the procedure
 in $pc:

$ra ß $pc + 4
$pc ß address of procedure

jr (jump register)

jr $ra # return address from $ra goes into $pc
 #NOTE: this should always by the last
 statement executed in a procedure!

 $pc ß $ra ($ra contains return address)

Program resumes execution of the instruction in the main
 program which follows the jal instruction (the procedure
 call in the main program).

MIPS registers use for procedures

$a0-$a3 argument registers to pass parameters

$v0-$v1 value registers to return values

$ra return address register to return to calling program

Stack use for Procedures
If more information or parameters than will fit in these registers is needed to
call or return from a procedure, the stack can be used to pass the extra
parameters.

Also, if the procedure modifies registers whose values are needed by the main
or invoking program, the stack can be used to save the original values of the
registers (which can then be restored before the return to the calling program).

The compiler convention is that if registers $s0 - $s7 are modified by a
procedure, the procedure should save the original value of the registers on the
stack, and restore them before the return from the procedure.

 Storing/restoring save registers on stack for procedure calls

main: la $a0,param0 #store parameters in $a0 - $a3
 la $a1,param1
 la $a2,param2
 la $a3,param3
 jal myproc #call procedure

…
 #rest of the main program instructions

#procedure definition
myproc: addi $sp,$sp,-32 #allocate 8 words on stack

sw $s0,0($sp) #store 8 registers on stack
sw $s1,4($sp)
sw $s2,8($sp)
…
sw $s6,24($sp)
sw $s7,28($sp)

 …
#instructions which use parameters and registers for some purpose
…

lw $s7,28($sp) #restore 8 registers from stack
lw $s6,24($sp)
lw $s5,20($sp)
…
lw $s1,4($sp)
lw $s0,0($sp)
addi $sp,$sp,32 #deallocate the stack

jr $ra #return from procedure to main program

Recursive and nested procedures

For recursive and nested procedures, there may be conflicts over the use of the
shared registers, so the convention is more restrictive.

The calling program must also save $ra on the stack, along with $a0 - $a3 and
$t0 - $t9 if their values need to be preserved across a procedure call, in
addition to any of the $s0 - $s7 registers modified by the procedure.

In lab today, you will see a recursive program, which reads and sums inputs
until a value of ‘0’ is entered.

Conventions for drawing stack diagrams

To record the contents of the stack to understand how the stack is used, using
the following notation:

- Assume the diagram below represents the stack before execution of the
main program. Each row in the stack represents a word. The initial $sp
with a subscript of 0 is pointing to the top of the stack.

- Trace the effect on the stack of executing each instruction in the program

by moving the position of the $sp when it changes, (incrementing the
subscript for each new value), and by recording new values on the stack
as they are stored there.

- When the stack starts to empty, continue with the same notation, except

use the right hand side of the stack diagram to indicate the changes.

- Also record changes to relevant registers. Start a new row each time a
register changes value. Only update the register with the new value in
each row (don’t re-write values that have not changed).

main: jal getAndSumValues
 move $t0,$v0

 …

getAndSumValues:
 addi $sp,$sp,-8
 sw $ra,4($sp)

 li $v0,4
 la $a0, prompt
 syscall

 li $v0,5
 syscall
 sw $v0,0($sp)

 bne $v0,$zero,recurse
 addi $sp,$sp,8
 jr $ra

recurse:
 jal getAndSumValues
 lw $t0,0($sp)
 lw $ra,4($sp)
 addi $sp,$sp,8

 add $v0,$t0,$v0

 jr $ra

 $v0 $t0

$sp0-------à

