Laboratory 4
Data Structures Representation

Computer Science 240

We have seen how primitive data like integers, floating point numbers, and
characters are stored in memory (as contiguous numerical values, accessed by
location/address in memory). How do we represent more complicated data/data
structures in memory at the machine level? Different high-level languages may
use different representations. You will learn more about this in lecture, and
will experiment with some of these representations in lab today.

One-dimensional arrays of numerical values

Exercise 1: Let’s begin with perhaps the simplest data structure, a one-
dimensional array (similar to the one you worked with on the assignment). When
all the elements of an array are the same size (such as an array of byte values),
the elements of the array can be stored in their indexed order in memory, and
accessed using:

base address of array + (size of element in bytes * index)

Here is the MIPS code to define an array, and a main program to invoke a
procedure getElement, which takes as parameters the base address and the index of
an array element, and returns the value of the specified array element:

.data
elements: .word 7 # number of elements in the array
.word 1 # size of element in the array
.byte 1,5,19,22,4,7,3
prompt : .asciiz ‘Enter an array index: '’
result: .asciiz ‘The value of the array element is:

.text
.globl main
main: 1i $vo0,4 #prompt for an index
la $a0,prompt
syscall

1i s$vo0,5 # read in the index and store in $a0
syscall
move $a0l,S$v0

la $al,elements # put the base address of array in $al
jal getElement # read in the value

move $t0,$v0 # move returned value to $t0

1i $vo0,4 # output the result string
la $a0,result
syscall

move $al,$t0 # output the result
1i $vo0,1
syscall

endmain: 1i s$vo0,10
syscall

1. What registers are used for the parameters to the procedure?
$a0 = index of array element, $al = base address of array

2. In what register is the element value returned?
$vo0

3. Add the procedure getElement to the above code (you can copy and paste the
starting code into MARS, but you may have to re-type the quotes used in the
strings).

Your code should assume that the size of the elements in the array is 1 byte.
Test by using various values in the range 0 — 6 for the index, and verify that
you get the correct values.

Paste the code for your procedure here:

procedure getElement takes as parameters the address of the array in $a0 abd the index of the
element in $a0

and returns in $v0 the element of the array at the specified index

getElement: 1w $t2,4($a0)# get the size of the array element
addi $a0,$a0,8 # adjust $al0 so that it points past the length and size to elements)

1i $ti1,1 # compare size of array with 1
beq $tl1,$t2,getByte # if the size is 1, get a byte value from the array

sll S$t1,$t1,1 # compare size of array with 2
beq $tl1,$t2,getHalf # if the size is 2, get a half word value from the array

getWord: sll $t0,$al,2# size of array is 4, so multiply the index by 4
add $t0,$a0,$t0 # add the index to the starting address of the array elements
lw $v0, ($t0) # read the value at that address in memory, return value in $vO0
j done

getHalf: sll $t0,$al,1# size of array element is 2, so multiply the index by 4
add $t0,$a0,$t0
1h $vO0, ($t0)
j done

getByte: add $t0,$a0,$al # size of array element is 1, so simply add index to starting address

1b $v0, ($t0)

done: jr Sra

4. Add some new array declarations to your data segment, including an array of
halfwords and one of words. Modify your main program so that it calls the
procedure with the correct parameters to access your new arrays, and test to be
sure the procedure works for different size elements. Demonstrate to the
instructor

Paste the new array declarations here:
array2: .word6

.word 2

.half 2,7,14,13,8,6

array4: .wordé6
.word 4
.word 4,11,19,12,24,30

5. Write a procedure printArray, which will print out all the elements of an
array, by using the getElement procedure. For the byte array elements defined
above, it should print (include the square brackets and commas):

[1,5,19,22,4,7,3]

Paste the code for printArray here:

procedure printArray takes as a parameter in $a0 the address of the array to be printed,

and prints all the elements with punctuation, i.e. [1,2,3,4]

printArray: addi $sp,$sp,-4 #save the $ra on the stack, since there is a nested procedure call
move $s0,$al
sw $ra,0($sp)

1i $vo0,11 # print starting bracket
1i $a0,'[
syscall

lw $t3,0($s0) # get the length of the array
1i S$al,o0 # initialize the loop counter to 0

loop until all the elements of the array are printed
printloop: move $a0,$s0 # begin the loop by getting an element from the array
jal getElement

move $al,$v0 # print the element
1i $vo0,1
syscall

addi Sal,S$al,l # increment the loop counter
beq $t3,$al,printend # if the loop counter = array length, done printing elements

1i $vo0,11 # not done printing elements, print a separating comma and continue
looping
1i $a0,',
syscall
j printloop
printend: 1i $al0,']"’ # print ending bracket
syscall
lw $ra,0(S$Ssp) # restore the Sra from the stack
addi $sp,$sp,4
jr Sra

One-dimensional arrays of strings

Exercise 2: On the lab assignment for today, the strings in the array were all
of equal length. This made it easy to access the elements of the array in the
same way you did for the first exercise (base address + size * index). What if
the strings are of variable length? There are a variety of techniques which might
be used to represent the data in memory.

Assume you have declared the following array of strings in Java:

String[] words = {‘I’,’do’,’'not’,’like’,’'green’,’'eggs’,’'and’, 'ham’}

Variable-length strings prefixed by bytes describing length, stored contiguously
in memory:
stringarrayl .word 8 #length of the arry
.byte 1
.ascii "I"
.byte 2
.ascii "do"
.byte 3
.ascii
.byte 4
.ascii "like"
.byte 5
.ascii "green"
.byte 4
.ascii "eggs"
.byte 3
.ascii "and"
.byte 2
.ascii "ham"

not"

Variable-length null-terminated strings stored (not necessarily contiguously) in
memory, the array contains the addresses of the strings:

using labels for each address for easier assignment

note: strings are not defined in order
addresseggs: .asciiz "eggs"

addressI: .asciiz "I"

addressham: .asciiz "ham"

addressnot: .asciiz "not"

addressgreen: .asciiz "green"

addressand: .asciiz "and"

addressdo: .asciiz "do"

addresslike: .asciiz "like"

array of 8 addresses
stringarrary2:.word 8
.word addressI,addressdo,addressnot,addresslike,addressgreen,addresseggs,addressand,addressham

3. For the first definition above, implement a procedure getAddressOf, which
takes as parameters the base address of the array and the index, and returns the
address of the string at the given index. To test your procedure, examine the
returned value using MARS, and verify that it is the correct address of the
string element you are accessing.

Paste your code for getAddressOf here:

procedure getAddressOf1 takes an address of an array as a parameter in $a0, and the index of an element in the array
as a parameter in $al, and returns the address of the specified array element
getAddressOfl: move $s0,$a0
addi $s0,$s0,4 # steop past length of array, put address of array elements in $s0
li $t0,0 # initialize loop counter to 0
addrloop: beq $t0,$a1,foundaddr # when the index is the same as the loop counter, you have found the element
Ib $t1,0($s0) # otherwise, get the length of the current element
addi $s0,$s0,1 # add the length of the current element + 1 to point to the next element of the array
add $s0,$s0,$t1
addi $t0,$t0,1 # increment the loop counter
j addrloop

foundaddr: move $v0,$s0 # return the address of the array element in $v0
jr $ra

4. Implement a new version of the procedure getAddressOf, assuming the array
elements are addresses of strings. Use the address returned by the procedure to
print the null-terminated string stored at the address which is returned from the
procedure. Demonstrate to the instructor.

Paste your second version of getAddressOf here:
procedure getAddressOf2 takes an address of an array as a parameter in $a0, and the index of an element in the array
as a parameter in $al, and returns the address of the specified array element

getAddressOf2: move $s0,$a0
addi $s0,$s0,4 # step past length of array, put address of array elements in $s0
li $t0,0 # initialize loop counter to 0
addrloop2: beq $t0,$a1,foundaddr2 # when the index is the same as the loop counter, you have found the element
addi $t0,$t0,1
addi $s0,$s0,4
j addrloop2

foundaddr2: lw $v0,0($s0) # get the address of the array element and return $v0
jr $ra

Notice the extra steps it takes to index elements of variable size! This
strategy is not actually used as a construct in higher-level languages. It can be
coded in a language like C, but it does not really fit C’s array support.

The second strategy (array of pointers to strings) is used in higher-level
languages, and would be used to define memory for the Java declaration given
above.

Two-dimensional arrays

Exercise 3: While Java allows two-dimensional arrays only as arrays of addresses
of arrays (much like the arrays of addresses of strings from the last exercise),
in C, nested array of arrays are used, where each row is stored contiguously in
memory (row-major format), and the address of an element can be calculated by the
following formula:

address of element[x][y] =
base address of array +
(x * number of columns * size of element) +
(y * size of element)

base address of array +
(x*columns + y)*size of element

Assume that the size of the elements in bytes will be 1, 2, or 4. This will not
always be true in real-life data structures, but it makes the calculation more
efficient here. Why?

Because you can shift to multiply by the size (instead of using the multiplication instruction)

1. Add the procedure getElement to the following code, which contains a
declaration for a 4x4 array of integers, and some test code to allow the user to
enter the indices to access an element of the array.

.data

twodi: .word 4 #size in bytes of each element
.word 4 #number of rows
.word 4 #number of columns

.word 1,3,5,7

.word 2,4,6,8

.word 9,11,13,15

.word 10,12,14,16

promptl: .asciiz "\nTo access an element A[x][y], enter x: "
prompt2: .asciiz " also enter y: "
.text
.globl main
main: 1i $v0,4 #prompt for an index
la $a0,promptl
syscall
1i svo0,5 # read in the row index and store in S$al
syscall
move al,Sv0
1i $vo0,4 #prompt for an index
la $a0,prompt2
syscall
1i svo0,5 # read in the column index and store in $al
syscall

move al,Sv0

la $a0,twodi # put the base address of the array in $a0
jal getElement
move $al0,$v0 # move the value of the element from $v0 to $a0 for printing

1i $vo0,1 # print the result
syscall
1i $vo0,10 # exit

syscall

Paste your code for getElement here:

procedure getElement has parameters of base address of array in $a0, x coordinate of element in
$al, and y

coordinate in $a2, and return value of specified array element in $vO

getElement: lw $t0,0(S$a0)
srl $t0,$t0,1 # $t0 = 0 for byte, 1 for half, 2 for word
1w $t1,4(S$al0)# $tl = number of rows
lw $t2,8(S$al0) # $t2 = number of columns
addi $s0,$a0,12 # $s0 points to the start of the array elements

calculate the address of the array element: base address + X * numcols * size + y * size
mul $t3, Sal,$t2 # $t3 = x * #cols
sllv $t3,St3,$t0 # $t3 = x * #cols * size

sllv $t4,$a2,$t0 # $t4 = y * size
add $t4,S$t3,$t4 # $t4 = x * numcols * size + y * size

add $s0,$s0,$t4 # $s0 = base address + x * numcols * size + y * size

get the value (byte, half, or word, depending on the size)
1i $t1,0

beqg $t0,$tl,getByte2d

s11l $tl1,$tl,1

beq $t0,$tl,getHalf2d

getWord2d: lw $v0,0(S$s0)
j end2d

getHalf2d: 1h $v0,0(S$s0)
j end2d

getByte2d: 1lb $v0,0(S$s0)

end2d: Jjr S$ra # return the value of the array element in $vO0

2. Write a procedure sumAll which uses a nested loop to iterate and sum
all the elements. Demonstrate to the instructor.

Paste your code for sumAll here:
procedure sumAll has parameter = base address of array in $a0, returns sum of all elements in $vO0
sumAlll: addi $sp,$sp,-4 # allocate stack for $ra (nested procedure)

sw $ra,0($sp)

lw $t5,4(S$al0) # $t5 = number of rows
lw $t6,8(Sal) # S$t6 number of columns

1i $s4,0 # accumulate sum in $s4, initialize to 0

1i $t7,0 # $t7 is x for outer loop of nested loop
outerloop: beqg $t7,$t5,doneouter

1i $t8,0 # $t8 is y for inner loop of nested loop

innerloop: beqg $t8,$t6,doneinner
move Sal,St7
move $a2,S$t8
jal getElement # get the element A[x][Y]
add $s4,$s4,$v0 # add to the running sum
addi $t8,$t8,1
j innerloop

doneinner: addi $t7,S$t7,1
j outerloop

doneouter: lw $ra,0($sp) # restore the $ra and return with the sum in $vO
addi $sp,$s0,4
move $vO0,$s4
jr Sra

3. Write a second version of sumAll, using a single loop (exploit
contiguous row layout and calculate total array size to determine loop

bound) .

Paste your code for the second version of sumAll here:
procedure sumAll2 has a parameter = base address of array in $a0, returns sum of all elements in
$vO0
sumAll2: addi $sp,$sp,-4 # allocate stack for $ra (nested procedure)
sw $ra,0($sp)

number of rows
number of columns

1w $t5,4($a0) # $t5
1w $t6,8(Sal) # S$t6

mul $t5,$t5,$t6 # $t5 = x * y, total number of elements in array
1i $s4,0 # accumulate sum in $s4, initialize to 0

1i $al,o0 # row index will always be 0

1i $a2,0 # $a2 will act as column index/loop counter
singleloop: beqg $a2,$t5,doneloop

jal getElement # get the element A[x][Y]

add $s4,$s4,$v0 # add to the running sum

addi $a2,$a2,1 # increment index

j singleloop

doneloop: lw S$ra,0($sp) # restore the $ra and return with the sum in $vO
addi $sp,$s0,4
move $vO0,$s4d
jr Sra

