Computer Science 240

Assignment for Lab 6
Refer to the Lab 6 notes and your lecture notes to complete the lab assignment.

1. Write a Boolean function for F using the sum-of-products form:

ABC F
$000 \quad 1$
$001 \quad 0$
010 1
$011 \quad 1$
$100 \quad 0$
$101 \quad 1$
1101
1110
2. Draw a transistor circuit (use transistors, not loge gate symbols) to implement $\mathrm{F}=\mathrm{A}{ }^{\prime} \mathrm{B}+\mathrm{C}$
3. Draw a circuit which implements the function G, using logic gate symbols (not transistors) for AND, OR, and NOT.

Do not simplify G before drawing the circuit.
You may use 1, 2, or 3-input gates of type AND, OR, and NOT.

$$
\mathrm{G}=\mathrm{A}\left(\mathrm{BC}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}\right)+\mathrm{B}\left(\mathrm{AB}+\mathrm{A}^{\prime} \mathrm{B}\right)
$$

4. Give the truth table for G. In the truth table, include the outputs of each of the gates in your circuit. For example:
$\underline{\mathrm{A} B \mathrm{C}} \quad \mathrm{BC} \quad\left(\mathrm{BC}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}\right) \quad \mathrm{A}\left(\mathrm{BC}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}\right) \quad \mathrm{AB} \quad \mathrm{A}^{\prime} \mathrm{B} \quad \mathrm{B}\left(\mathrm{AB}+\mathrm{A}^{\prime} \mathrm{B}\right) \quad \mathrm{A}\left(\mathrm{BC}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}\right)+\mathrm{B}\left(\mathrm{AB}+\mathrm{A}^{\prime} \mathrm{B}\right)$
000
001
010
011
100
101
110
111
5. Use the identities of Boolean algebra to show that G is equivalent to $F=A+B$. Show all your work, and list the identity used for each step.
$\mathrm{G}=\mathrm{A}\left(\mathrm{BC}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}\right)+\mathrm{B}\left(\mathrm{AB}+\mathrm{A}^{\prime} \mathrm{B}\right) \quad \mathrm{F}=\mathrm{A}+\mathrm{B}$
