Computer Science 240

Assignment for Lab 6

1. Write a Boolean function for F :

ABC F
$000 \quad 1$
$001 \quad 0$
010 1
$011 \quad 1$
$100 \quad 0$
$101 \quad 1$
$110 \quad 1$
1110
$\mathrm{F}=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime}+\mathrm{A}^{\prime} \mathrm{BC}+\mathrm{AB}^{\prime} \mathrm{C}+\mathrm{ABC}^{\prime}$
2. Draw a transistor circuit (use transistors, not loge gate symbols) to implement $\mathrm{F}=\mathrm{A}^{\prime} \mathrm{B}+\mathrm{C}$

2. Draw a circuit which implements the following function G, using logic gates for AND, OR, and NOT .

Do not simplify G before drawing the circuit.
You may use 1, 2, or 3-input gates of type AND, OR, and NOT.

$$
\mathrm{G}=\mathrm{A}\left(\mathrm{BC}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}\right)+\mathrm{B}\left(\mathrm{AB}+\mathrm{A}^{\prime} \mathrm{B}\right)
$$

3. Give the truth table for G. In the truth table, include the outputs of each of the gates in your circuit. For example:

A	B	C	BC	$\left(\mathrm{BC}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}\right)$	$\mathrm{A}\left(\mathrm{BC}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}\right)$	AB	$\mathrm{A}^{\prime} \mathrm{B}$	$\mathrm{B}\left(\mathrm{AB}+\mathrm{A}^{\prime} \mathrm{B}\right)$
0	0	0	0	1	0	0	0	0
0	0	1	0	1	0	0	0	0
0	1	0	0	1	0	0	1	1
0	1	1	1	1	0	0	1	1
1	0	0	0	1	1	0	0	0
1								
1	0	1	$\left.\mathrm{C}^{\prime}\right)+\mathrm{B}\left(\mathrm{AB}+\mathrm{A}^{\prime} \mathrm{B}\right)$					
1	0	1	0	1	1	0	0	0
1	1	0	0	1	1	1	0	1
1	1	1	1	1	1	1	0	1

4. Use the identities of Boolean algebra to show that G is equivalent to $F=A+B$. Show all your work, and list the identity used for each step.

$\mathrm{G}=$	$\mathrm{A}\left(\mathrm{BC}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}\right)+\mathrm{B}\left(\mathrm{AB}+\mathrm{A}^{\prime} \mathrm{B}\right)$	
	$\mathrm{F}=\mathrm{A}+\mathrm{B}$	
	$\mathrm{A}\left(\mathrm{BC}+(\mathrm{BC})^{\prime}\right)$	
$\mathrm{A}(1)$		DeMorgan's
A	Inverse	
A		Identity
A	$+\mathrm{B}\left(\left(\mathrm{A}+\mathrm{A}^{\prime}\right) \mathrm{B}\right)$	
Distributive		
A	$+\mathrm{B}((1) \mathrm{B}))$	Inverse
A	+BB	Identity

