Laboratory 6
 Basic Digital Circuits

Exclusive OR (XOR)

$\mathrm{F}=\mathrm{AB}^{\prime}+\mathrm{A}^{\prime} \mathrm{B}=\mathrm{A} \oplus \mathrm{B}$

A B F
0000

011

101
110
Available on IC as a gate, useful for comparison problems

Example: Even parity $\quad \mathrm{F}=\mathrm{A} \oplus \mathrm{B} \oplus \mathrm{C}$

		\mathbf{B}		
\mathbf{A}	\mathbf{C}	\mathbf{F}		
0	0	0	0	
0	0	1		1
0	1	0		1
0	1	1		0
1	0	0		1
1	0	1		0
1	1	0		0
1	1	1		1

Multiplexer

- n select lines
-2^{n} input lines
- 1 output

One of the possible 2^{n} inputs is chosen by the n select lines, and gated through to the output of a multiplexer.

S2	S1	S0	\mathbf{Q}
0	0	0	D0
0	0	1	D1
0	1	0	D2
0	1	1	D3
1	0	0	D4
1	0	1	D5
1	1	0	D6
1	1	1	D7

Mulitplexers are usually used for selection, but can also act as code detectors.

Decoder

- n input/select lines
- 2^{n} outputs
- only one of the outputs is active at any given time, based on the value of the n select lines.

S2	S1	S0	$\mathbf{Q 0}$	$\mathbf{Q 1}$	$\mathbf{Q 2}$	$\mathbf{Q 3}$	$\mathbf{Q 4}$	$\mathbf{Q 5}$	$\mathbf{Q 6}$	$\mathbf{Q 7}$
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

Decoders may also be used as code detectors

Half-Adder - adds two one-bit values
A
B

A	B	Sum	Cout
0	0		
0	1		
1	0		
1	1		

Full Adder - incorporates a carry-in

A	B	Cin	Sum	Cout	
0	0	0	0	0	Sum $=A \oplus B \oplus C i n$
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	Cout $=A B+(A \oplus B)$ Cin
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

n-bit adder = n 1-bit adders
Carry-out of each adder = Carry-in of the adder for next two most significant bits being added

Arithmetic Logic Unit (ALU)

Ainvert	Binvert	Cin	Op1	Op0	Result
0	0	X	0	0	a AND b
0	0	X	0	1	a OR b
0	0	X	1	0	$\mathrm{a}+\mathrm{b}$ (add)
0	1	1	1	0	$\mathrm{a}-\mathrm{b}$ (
0	1	1	1	1	Set on Less Than

addition (a + b)
AND gate (a AND b) OR gate (a OR b)
NOR (invert a, invert $b, a \operatorname{AND} b)$
SLT (invert $\mathrm{b}, \mathrm{c}_{\mathrm{in}}=1$, so that $\mathrm{a}-\mathrm{b}$ is performed by the adder; sign bit and overflow bit used to set Less bit which goes to LSB of result) if $\mathrm{a}<\mathrm{b}$

LSB of result = ‘1', other result bits = ‘0' else
all bits of result $=0$

