CS240 Laboratory 7
 Memory Circuits

Basic Memory Circuits

Latch
Flip-Flop

Single-bit memory, level-triggered
Also single-bit, but edge-triggered

SR (Set Reset) Latch

\mathbf{S}	\mathbf{R}	\mathbf{Q}	
0	0	Qo remember	
0	1	0	reset (clear)
1	0	1	set
1	1	unstable/non-deterministic	

SR latch uses 2 cross-coupled NOR gates:

\mathbf{A}	\mathbf{B}	$(\mathbf{A}+\mathbf{B})^{\prime}$
0	0	1
0	1	0
1	0	0
1	1	0

What does unstable/non-deterministic mean? Notice in a NOR gate, if either input = 1 to a gate, its output = 0 (deterministic input)

You wouldn't usually try to set and reset at the same time (it doesn't make sense), but if you did, $Q=Q^{\prime}=0$. This is predictable.

However, when you go back to the remember state ($\mathrm{S}=\mathrm{R}=0$) from $\mathrm{S}=\mathrm{R}=1$, Q and Q ' do not stay at 0 (the circuit does not 'remember' the previous output). Instead, Q and Q ' change to the complement of one another.

But, you cannot predict whether Q will be 1 or 0 ! The final state depends on which of the inputs (S or R) being set to 0 is sensed first in the circuit. It is for this reason that the $S=R=1$ state is called non-deterministic, or unstable.

Here is an equivalent circuit for the SR latch, using NAND gates only:

Works the same, except when $S=R=1, Q=Q^{\prime}=1$ (instead of 0 as in the NOR gate configuration). Why?

For the NAND gate, if either input is 0 , the output is 1 (so 0 is the deterministic input)

\mathbf{A}	\mathbf{B}	$(\mathbf{A B})^{\prime}$
0	0	1
0	1	1
1	0	1
1	1	0

Clocked SR Latch incorporates a clock input

Change occurs only on a high clock level.

3 circuits which avoid non-deterministic state D Latch

\mathbf{D}	Qnext
0	0
1	1

T Latch

JK Latch

Circuits using Flip-flops

Binary Counter: The following circuit has 4 interconnected T flipflops, with the output of each flip-flop tied into the input of the next flip-flop.

QA serves as the clock to QB. So, QB only changes when QA falls from 1 to 0 (on the negative edge). $Q B$ therefore only changes half as frequently as QA.

A similar relationship exists for $Q B$ to $Q C$, and $Q C$ to $Q D$.
The pattern of outputs then represents the binary numbers, since that is exactly how the digits change as the numbers increment.

$C K$	$Q D$	$Q C$	$Q B$	$Q A$
1				
0	0	0	0	0
1				
0	0	0	0	1
1				
0	0	0	1	0
1				
0	0	0	1	1
1				
0	0	1	0	0
1				
0	0	1	0	1
1				
0	0	1	1	0
1				
0	0	1	1	1
1			0	0
0	1	0	0	0
1			0	1
0	1	0	0	
1				0
0	1	0	1	0
1				
0	1	0	1	1
1			0	0
0	1	1	0	0
1			0	1
0	1	1		
1			1	0
0	1	1	1	
1			1	1
0	1	1	1	1

Register: n-bit memory, using n flip-flops, shared clock and clear inputs

Register File: set of registers

- Write is the write control signal.
- Write register is the single register to be written to at a time
- Read register number 1 and 2 indicate which 2 registers can be read at data ports Read data 1 and Read data 2
- clear and clock (CLR and CLK) are shared by all the 16 registers.
- CLR is active low

LogicWorks register file

Internally:

- 2 sets of 16 x 1 multiplexers select which 2 registers are currently being output at the two read ports.
- A 4×16 decoder uses the write register number to select which of the 16 registers will receive a new value on a write.

