Mini-MIPS DataPath

Computer Science 240

Laboratory 9

In this lab, you will begin constructing a datapath for the mini-MIPS CPU. The lab machine is very similar to the single-cycle MIPS architecture you are studying in lecture: the main difference between the two will be in the size of the address and data buses (to make the circuit you build in lab somewhat more manageable to work with).

 You have already experimented with some of the circuits that are major components of the datapath, including multiplexers, ALU, registers, register file, multiplexers, and an instruction memory. Today, you will design some additional datapath subcircuits, including a sign-extend and shift-left circuit.
You will then begin to construct a datapath for the mini-MIPS CPU, which consists of these circuits connected together with the proper logic to execute the 9 instructions from the simple MIPS instruction set you have been introduced to.

Sign-Extend

Exercise 1: Design a new circuit in LogicWorks which will take a 4-bit value and sign-extend it to 8 bits. Paste the circuit below:

Test the circuit by simulating inputs and outputs.

Abstract your design into what in LogicWorks is called a subcircuit. Here are the steps:

1. For each of your inputs, add a Port In connector (from the Connect library of the Parts Palette). For each of your outputs, add a Port Out connector. Label the connectors (remember that the label must be attached to the port).

2. Select New in the File menu, and choose the Device Symbol option. Click OK.

3. From the Options menu, select the Subcircuit/Part Type command, and choose the “Create a subcircuit syjmbol and select an open circuit to attach to it..” option.

4. Select the sign extend circuit which you have open, and click OK. Close the PartType configuration dialog by clicking on DONE. You will notice that the symbol editor has extracted the names from the port connectors in the subcircuit, and placed them in the Pin List at the left side of the main window.

5. Create a graphic for the subcircuit by selecting the Autocreate symbol command from the Options menu. To assign every pin listed in the Pin List to a corresponding graphical pin on the device symbol, click on Extract Pin List. Under Part Name, type in sign extend. Click on Generate Symbol to create the new sign extend symbol.

6. From the menu bar, select File, then Save As from the pulldown menu. When the Save Part As window opens, click on the New Lib button. When the Save Library As window open, type yourname.clf, and save it in the LIBS folder of LogicWorks by clicking on Save (if you get a dialog box that asks you if you want to overwrite an already existing library, click Yes). Back in the Save Library As window, select the library yourname.clf, and click on Save to store the sign extend subcircuit in the library.

Close the device symbol editor, and open a new design window. Select your sign extend circuit from your library, and place it in your design window. Test your subcircuit by connecting input and output devices, and again verifying the correct operation of the device.

Shift-Left

 Exercise 2: Design a new circuit which will take an 8-bit value and shift it left by 1 bit. Paste the circuit below:

Test the circuit by simulating inputs and outputs. Abstract your design into a subcircuit, as you did in exercise 1.

Open a new design window. Select your shift left circuit from your library, and place it in your design window. Test your subcircuit by connecting input and output devices, and again verifying the correct operation of the device.

Instruction Fetch
 Exercise 3: To execute a program, the CPU must fetch each instruction from the instruction memory. The program counter, or PC, is a register in the CPU that contains the address of the instruction currently being executed.

The PC is connected to the address inputs of the memory device, and the instruction stored at that address is output on the data output lines of the memory device (and is then fed into the processor for execution).

The PC must be updated after an instruction is fetched, with the address of the next instruction stored in memory. Often, this will simply be PC + 2, since the default is instructions execute in sequential order. All this can be implemented as shown below:

[image: image1.emf]
Add an 8-bit register (Reg-8 in LogicWorks) and an 8-bit adder to your Instruction Memory circuit from last week (you can find this in parts.cct from the Google group).
To simulate operation of the circuit, connect binary switches to the CLK and RESET lines of the PC register (RESET should connect to the CLR input of the register).
 Begin by activating the RESET (set to 1 and back to 0) line, which will initialize the PC to address 0.

Step through the first 6 addresses in memory, and record the instruction stored at each address by activating the CLK input to update the PC for each sequential instruction stored in memory:

Address
Instruction

0000

You should recognize the values you just recorded: where have you seen them before?
Branch Address

Exercise 4: The address of the next instruction to fetch is not always PC + 2, as we designed in the previous exercise. When the Branch-if-equal (BEQ) instruction is executed, a new address specified by the instruction must be fed into the PC. Therefore, it is necessary to calculate this new address when a BEQ is executed. The following circuit will be used for this purpose:
[image: image2.png]Branch Zero

CLK RESET

How does this work? The format for the BEQ instruction is:

BEQ Rs Rt offset # if Rs = Rt, then PC = PC + 2 + 2*offset

Since offset specifies the number of words away from the next value of the PC that you wish to branch to, the offset must be multiplied by 2.
The offset is a 4-bit value (bits 3..0 of the instruction), so to perform the calculation of the branch address, you must sign-extend the offset to 8 bits. Then, to multiply by 2, shift left by 1.
An 8-bit adder can be used to calculate PC + 2 + 2*offset.

A 8x2 MUX (from pars.cct) is then used to select whether PC + 2 or PC + 2 + 2*offset will be the next value of the PC. The MUX selects the branch address is both Branch and Zero are true: Branch = 1 if a BEQ instruction is being executed, and Zero = 1 if the comparison is met for the BEQ instruction.
To construct the circuit:

1. Add the new components to your circuit from the last exercise.
2. Simulate Branch and Zero with binary switches (since the real signals are produced in the part of the datapath which you have not yet constructed).

3. Also, simulate the 4-bit offset with a hex keyboard (the offset will come from the instruction being executed when the datapath is complete, but you must simulate it for now).
To test the circuit:
1. Begin by activating the RESET line, which will initialize the PC to address 0.

2. Set the offset = 3, Branch = 1, Zero = 1.

 What do you expect the next value of the PC to be? Show your calculation below:

3. Activate the CLK input, and verify that the PC is what you expect.

4. Set Zero = 0.
 What are you simulating when you do this?

5. Activate the CLK input.

What is the next value of the PC? Why?

6. Set Branch = 0, Zero = 1, and activate the CLK input.

What is the next value of the PC? Why?
7. Set Branch = 1 and Zero = 1. Assume PC = C to begin, and do not clear PC after each test. Set the offset to the following values:
Record the PC after you activate the CLK for each offset. Show your calcuations to verify that PC is the correct value.
offset

PC

Calculations

C

5

2

9

Demonstrate to the instructor. Save your circuit.

Register File and ALU Operation

Exercise 5: The R-Type instructions are ADD, SUB, AND, OR, and SLT. The general format of these instructions is:

Inst Rs Rt Rd

For these instructions, the processor will:

· read Rs and Rt from the register file

· perform an ALU operation on the contents of the registers

· write the result to register Rd in the register file

There are also memory access instructions , load word and store word (LW and SW), which use the register file and ALU. The general form of these 2 instructions is:

Inst
Rs Rt offset

· Compute a memory address by adding Rs to the sign extended 4-bit offset

· For a store, the value to be stored is read from Rt
· For a load, the value read from memory is written into Rt
When an R-type instruction is executed, the destination register is specified by Rd. However, when a memory access instruction is executed, the destination register is specified by Rt. Therefore, a multiplexer is needed to choose the source for destination register, which is then fed into the Write input of the Regfile.

When an R-type instruction is executed, the Read Data 1 and Read Data 2 outputs of the register file select the contents of Rs and Rt, and feed the values into the A and B sides of the ALU to perform the desired operation. However, when a memory access instruction is executed, the ALU needs to add Rs to the sign extended offset to calculate a memory address.

So, the ALU must be able to calculate either Rs + Rt, or Rs + sign-extended offset. Rs always feeds in to side A of the ALU, but a multiplexer is needed to select whether the B side comes from Rt or from the offset.

The diagram below shows the required components to accomplish these operations. Find the register file and the ALU in parts.cct circuit - you will also find a 16x2 MUX and sign-extend circuit there. A 2x4 MUX is also required, but you can find in the LogicWorks library.

[image: image3.png]REGWRITE

Read
Re register 1 Read ALUop
Read data 1 PR
register 2
Regrie
wite
wx register Read | 16 AU AL
1 i data2 [P | g resul
i - Wite
Data e
N
AT
offset ALUSre

Display Read data 1 and Read data 2 from the Regfile, and the ALU result using hex displays.

To simulate operation of the circuit, connect binary switches to the CLK, RESET, and REGWRITE lines of the register file, and to the RegDst and ALUSrc select lines of the two multiplexers. Use hex keyboards for Rs, Rt, Rd, and ALUop.

Begin by activating the RESET line, which will initialize the registers to 0 (except register 1, which is initialized to a value of 1). This RESET is active low, so set to 0 and back to 1 to perform a reset.

The following table describes which ALU function will be produced by a given value of ALUop:

ALUop
ALU function

0

a AND b

1

a OR b

2

a + b (add)

6

a - b

7

set on less than

Set the following values on the input devices. For each test, activate the CLK input to perform the operation, and record the ALU result:

Test 1:

ALUop
Rs
Rt
Rd
RegWrite
RegDst
ALUSrc

ALU result

2
1
1
6

1
0
0

Explain the operation and result:

Test 2:

ALUop
Rs
Rt
Rd
RegWrite
RegDst
ALUSrc

ALU result

2
6
6
3
1

0
0

Explain the operation and result:

Test 3:

ALUop
Rs
Rt
Rd
RegWrite
RegDst
ALUSrc

ALU result

2
6
1
7
0

1
1

Explain the operation and result:

Assume this test simulates a Store Word (SW) instruction. What value would be stored to what address?

Test 4:

ALUop
Rs
Rt
Rd
RegWrite
RegDst
ALUSrc

ALU result

2
3
6
5
1

1
1

Explain the operation and result:

Assume this test simulates a Load Word (LW) instruction. What address is being accessed?

What register will receive the value stored at that address?

Demonstrate to the instructor. Save your file.

Data Memory

Exercise 6: Your circuit from the previous exercise should look something like this:
[image: image4.png]x A+ [+ &

Eeil

Q15
a1s
Q13

Q12 (B

att

aiofR

Qg
a8
a7
a6
a5
Qs
a3
a2
at
a0

= 40 g
£ RDdatar_15
% RDdatal 14
Roreg 3 3 RDdata1 13
RDreg1_2
Rrsyioy redfiey
0Tz RDregi 0 RDaata1 10
4567 RDreg2 3
IRy ROreg2"2
CDEF Roreg2 1
[HE RDreg2 0
4567 WRregd
598 WRreg2
CDEF WRregl
[T H| WRreg
4567 WRdatal5
598 WRdata14 o
coEF WRdatal 3 RDdataz_T54 15
T WRdatal 2 RDdataz_1 44 g 16x2 Mux
WRata 1 RDdataz 134 13
WRdatal 0 RDdataz 12} 12
WRiatad RDdataz 1 1 Al
WRiatag RDdataz_10f A0
WRiatal 9
WRiatah 48
WRiata5 &
WRiatad 5
WRiata3 45
WRiata2 a4
WRdatal a3
WRiata a2
At
55 A0
8% Bi5
T Bi4
B13
B12
Bi1
— — i
Sign extend gg
ats 87
atd 86
a3 85
H B4
ati B3
ato B2
D3| pg] Bl
2402 a8 BO
D1 a7
Dol po a6
as
Qi
a3
a2
al
an

Zero
515
14
513
512
811
10

£
58
57
8
B
4
53
52
il
50

cany
overfaw

8 lablldatapath.cct

=

EEEEEET

This datapath can execute the R-type instructions. However, the memory access instructions, LW and SW, require an additional memory device, so that data can be stored and retrieved by the processor during program execution.

The circuit requires an additional device to execute the memory access instructions (as shown on the next page):

[image: image5.emf]
On LW and SW, the address calculated by the ALU is used to access a location in the Data Memory. On SW, the value from Rt gets written to the location. On LW, the value at the location gets written to Rt.

The following table describes which ALU function will be produced by a given value of ALUop:

ALUop
ALU function

0

a AND b

1

a OR b

2

a + b (add)

6

a - b

7

set on less than

 Below is a LogicWorks circuit which implements the datapath, including Data Memory:

[image: image6.png]& Fie Edt View Schematic Smulstion Window Help

\Documents and Settings\jherbstiDesktoplex1.cct]

fl

el 2% ol o< | o]k

D|e|e(&@| %|%(m(e 2 Llafh A A+ |+] @[o=(=] 2wz

“hhh T

55

FEEEERE

= =5 =
=N i
= =0 =
=0 F% =g

<

T

Il

AEvReae

N

)

=
7k
73—‘ =
= o
ey el = =
= 2 St 1= S
T = . [~ = = H
=] = =] 2 = =
] = = - = =
7= B =5 o2 -
Za ks F = B
| g H 7= i
| w - F=- =
N : = =
L = 7= = B
= — =
B EE =
E A = B
= = f =N = H
= e = - = H
= == H
= A

‘s exl.cot

Ready

start * 2 € [@

ORI

Modify your circuit as shown above to incorporate the data memory. You can get the the memory chip from the memory.cct file.

NOTE: a magnified view of the logic for enabling the Data Memory chip is shown on the next page:

[image: image7.png]herbstiDesktoplex1.cct]
w Hel

N Aaft |+ S[ol=(=] 2/

EIRALY|

MemRead

To test, begin by activating the RESET line, which will initialize the registers to 0 (except register 1, which is initialized to a value of 1).

Set the following values on the input devices. For each test, activate the CLK input to perform the operation.

Test 1:

ALUop
Rs Rt Rd RegWrite RegDst ALUSrc MemRead
 MemWrite MemtoReg
ALU result

2
1 1 5

1
0
0
1

1

0

Explain the operation and result:

Test 2:

ALUop
Rs Rt Rd RegWrite RegDst ALUSrc MemRead
 MemWrite MemtoReg
ALU result

2
0 5 0

0
1
1
1

0

0

Assume this is a SW instruction. What tells you this?

Explain the operation and result: what value will be stored into what address?

Test 3:

ALUop
Rs Rt Rd RegWrite RegDst ALUSrc MemRead
 MemWrite MemtoReg
ALU result

2
5 1 0

0
1
1
1

 0

0

Again, assume a SW instruction. Explain the operation and result: what value will be stored into what address?

Test 4:

ALUop
Rs Rt Rd RegWrite RegDst ALUSrc MemRead
 MemWrite MemtoReg
ALU result

2
0 3 0

1
1
1
0

 1

1

This time, assume a LW instruction. What tells you this?

Explain the operation and result: what value is loaded from what address into what register?

Test 5:

ALUop
Rs Rt Rd RegWrite RegDst ALUSrc MemRead
 MemWrite MemtoReg
ALU result

2
3 4 0

1
1
1
0
 1

1

Again, assume a LW instruction. Explain the operation and result: what value is loaded from what address into what register?

Test 6:

ALUop
Rs Rt Rd RegWrite RegDst ALUSrc MemRead
 MemWrite MemtoReg
ALU result

2
3 5 2

1
0
0
1

1

0

Explain the operation and result.
Test 7:

ALUop
Rs Rt Rd RegWrite RegDst ALUSrc MemRead
 MemWrite MemtoReg
ALU result

7
3 2 6

1
0
0
1

1

0

Explain the operation and result.
Test 8:

ALUop
Rs Rt Rd RegWrite RegDst ALUSrc MemRead
 MemWrite MemtoReg
ALU result

1
2 6 7

1
0
0
1

 1

0

Explain the operation and result.
Test 9:

ALUop
Rs Rt Rd RegWrite RegDst ALUSrc MemRead
 MemWrite MemtoReg
ALU result

6
2 1 2

1
0
0
1

 1

0

Explain the operation and result.
Test 10:

ALUop
Rs Rt Rd RegWrite RegDst ALUSrc MemRead
 MemWrite MemtoReg
ALU result

0
2 7 4

1
0
0
1

 1

0

Explain the operation and result.
Test 11:

ALUop
Rs Rt Rd RegWrite RegDst ALUSrc MemRead
 MemWrite MemtoReg
ALU result

2
3 7 2

0
1
1
1

 0

0

Explain the operation and result.

Test 12:

ALUop
Rs Rt Rd RegWrite RegDst ALUSrc MemRead
 MemWrite MemtoReg
ALU result

2
3 8 0

1
1
1
0

1

1

Explain the operation and result.
At the end of the tests, list the following:

Values of registers 0 – 8

Data stored at memory addresses 0, 2, and 4:

