

CS240 Laboratory 2

Digital Logic

• Protoboard/Integrated Circuits review

• LogicWorks

• Circuit Equivalence

• Boolean Algebra/Universal Gates

• Exclusive OR

• Binary Numbers

• Signed Representation/Two’s Complement and Overflow

PB-503 Protoboard
Do not remove wires, resistors, or other devices already on the board.

Remove (clean up) what you have added at the end of lab!

Breadboard for wiring circuits

An array of holes in which wires or component leads can easily be inserted

All holes in a row internally connected (use to tie one point to another in the
circuit)

Use .22 gauge wires with 1/4” of insulation stripped from both ends

Insert chips straddling the groove

Logic diagrams are not the same as pin-outs! Show information about the
logical operation of the device.

Pin-Out (found in TTL Data Book or online) show the physical layout of
the pins:

Top left pin is
pin 1, always to
left of notch in
chip, and often
marked with a dot

Pins are
numbered,
starting with “1”
at the top left
corner and
incremented
counter-
clockwise around
the device

Bottom left pin is
almost always
connected to ground
(0V)

Top right pin is almost
always connected to
Vcc (+5V)

The chip will not work
if it is not connected to
power and ground!

Circuit Simulation/LogicWorks (demo)

Circuit Equivalence

Two boolean functions with same truth table = equivalent

When there is an equivalent circuit which uses fewer gates, transistors, or
chips, it is preferable to use that circuit in the design

Example:
Given: F = A'B' + A'B Q = A’ + A’B + A’B’

A B A’B’ A’B F A B A’ A’B A’ B’ Q
0 0 1 0 1 0 0 1 0 1 1
0 1 0 1 1 0 1 1 0 0 1
1 0 0 0 0 1 0 0 0 0 0
1 1 0 0 0 1 1 0 0 0 0

F and Q are equivalent because they have the same truth table.

Identities of Boolean Algebra

- Identity law 1A = A 0 + A = A

- Null law 0A = 0 1 + A = 1

- Idempotent law AA = A A + A = A

- Inverse law AA' = 0 A + A' = 1

- Commutative law AB = BA A + B = B + A

- Associative law (AB)C = A(BC)

 (A + B) + C = A +(B + C)

- Distributive law A + BC =(A + B)(A + C)
 A(B + C) = AB + AC

- Absorption law A(A + B) = A
 A + AB = A

- De Morgan's law (AB)' = A' + B'
 (A + B)' = A'B’

Example:
 F = A’B’ + A’B Q = A' + A'B + A'B'
 = A’(B’ + B) distributive = A’ + A’B’ absorption
 = A’(1) inverse = A’ absorption
 = A’ identity

Universal Gates

Any	 Boolean	 function	 can	 be	 constructed	 with	 NOT,	 AND,	 and	 OR	 gates	

NAND and NOR = universal gates

DeMorgan’s Law shows how to make AND from NOR (and vice-versa)

AB = (A' + B')' (AND from NOR)
A + B = (A'B')' (OR from NAND)

NOT from a NOR

OR from a NOR

To implement a function using only NOR gates:

- apply DeMorgan's Law to each AND in the expression until all ANDs
are converted to NORs

- use a NOR gate for any NOT gates, as well.
- remove any redundant gates (NOT NOT, may remove both)

Implementing the circuit using only NAND gates is similar.

Example: Q = (AB)'B'

 = (A' + B')B'

 = ((A'+B')' + B)' (NOR gates only, since NOR can be used
 as a NOT gate)

Simplifying Circuits or Proving Equivalency

General rule to simplify circuits or prove equivalency:

1. Distribute if possible, and if you can’t, apply DeMorgan’s Law so that
you can.

2. Apply other identities to remove terms, and repeat step 1.

EXAMPLE: Is (A’B)’(AB)’ + A’B’ equivalent to (AB)’?

F = (A’B)’(AB)’ + A’B’ -- can’t distribute
 = (A + B’) (A’ + B’) + A’B’ DeMorgan’s
 = AA’ + AB’ + A’B + B’B’ + A’B’ distributive
 = 0 + AB’ + A’B + B’ + A’B’ inverse and idempotent
 = AB’ + A’B + A’B’ identity
 = B’ (A+ A’) + A’B distributive
 = B’(1) + A’B inverse
 = B’ + A’B identity
 = B’ + (A + B’)’ DeMorgan’s
 = (B(A + B’))’ DeMorgan’s
 = (AB + BB’)’ distributive
 = (AB + 1)’ inverse
 = (AB)’ identity

Exclusive OR (XOR)

F = AB' + A'B = A ⊕ B

A B F
0 0 0
0 1 1
1 0 1
1 1 0

Available on IC as a gate, useful for comparison problems

Example: Even parity F = A ⊕ B ⊕ C

A B C F
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Binary Numbers

Hex Binary .
0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
3 0 0 1 1
4 0 1 0 0
5 0 1 0 1
6 0 1 1 0
7 0 1 1 1
8 1 0 0 0
9 1 0 0 1
A 1 0 1 0
B 1 0 1 1
C 1 1 0 0
D 1 1 0 1
E 1 1 1 0
F 1 1 1 1

Binary can be converted to decimal using positional representation of powers
of 2:

 01112 = 0 x 23 + 0 x 22 + 1 x 21 + 1 x 20 , result = 710

Decimal can be also be converted to binary by finding the largest power of 2
which fits, subtract, and repeat with the remainders until remainder is 0
(assigning 1 to the positions where a power of 2 is used):

 610 = 6 - 22 = 2 - 21 = 0, result = 01102

Hex can be converted to binary and vice versa by grouping into 4 bits.

111101012 = F516 3716 = 001101112

Signed Representation/Two’s Complement and Overflow

Given n bits, range of binary values for

Unsigned representation: 0 –> 2n – 1
Signed representation: – 2n-1 -> 2n-1 – 1

We use Two’s complement to represent signed numbers. The lefttmost bit is
the sign bit (0 for positive numbers, 1 for negative numbers).

Example: given a fixed number of 4 bits,

10002 is negative.
 01112 is positive.

Given a fixed number of n bits, overflow occurs if a value cannot be
represented in n bits.

Example: given 4 bits,

The largest negative value we can represent is -810 (10002).
The largest positive value we can represent is +710 (01112).

When adding two numbers with the same sign which each can be represented
with n bits, the result may cause an overflow.

An overflow occurs when either:

 Two positive numbers added together yield a negative result, or
 Two negative numbers added together yield a positive result.

An overflow cannot result if a positive and negative number are added.

Example: given 4 bits,

 0111
+ 0001
 1000 overflow NOTE: there is not a carry-out!

In two’s complement representation, a carry-out does not indicate an
overflow, as it does in unsigned representation.

 Example: given 4 bits,

 1001 (-7)
 + 1111 (-1)
 1 1000 (-8) no overflow, even though there is a carry-out

