Laboratory 3

Basic Digital Circuits

Decoder

- n input/select lines
-2^{n} outputs
- only one of the outputs is active at any given time, based on the value of the n select lines.

Multiplexer

- n select lines
- 2^{n} input lines
- 1 output

One of the possible 2^{n} inputs is chosen by the n select lines, and gated through to the output of a multiplexer.

$\mathbf{S 2}$	S1	S0	\mathbf{Q}
0	0	0	D0
0	0	1	D1
0	1	0	D2
0	1	1	D3
1	0	0	D4
1	0	1	D5
1	1	0	D6
1	1	1	D7

Mulitplexers are usually used for selection, but can also act as code detectors.

Half-Adder - adds two one-bit values

A
B

A	B	Sum	Cout
0	0		
0	1		
1	0		
1	1		

Full Adder - incorporates a carry-in

A	B	Cin	Sum	Cout	
0	0	0	0	0	Sum $=A \oplus B \oplus$ Cin
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	Cout $=A B+(A \oplus B)$ Cin
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

n-bit adder = n 1-bit adders
Carry-out of each adder = Carry-in of the adder for next two most significant bits being added

Arithmetic Logic Unit (ALU)

Ainv	Binv	Cin	Op1	Op0	Result
0	0	X	0	0	a AND b
0	0	X	0	1	a OR b
0	0	$0 / 1$	1	0	$\mathrm{a}+\mathrm{b}$
0	1	1	1	0	$\mathrm{a}-\mathrm{b}$
1	1	X	0	0	a NOR b

add ($\mathrm{a}+\mathrm{b}+\mathrm{Cin}$) sub (invert $\mathrm{b}, \mathrm{Cin}=1, \mathrm{a}+\mathrm{b}+\mathrm{Cin})$

```
AND (a AND b) OR (a OR
b) NOR (invert a, invert b, a AND
b)
Cout = 1 if (adder produces a carry-out == 1)
Zero = 1 if (all bits of result == 0)
Overflow = 1 if (Cin XOR Cout == 1)
```

