
Laboratory 3

Basic Digital Circuits

Decoder

- n input/select lines
- 2n outputs
- only one of the outputs is active at any given time, based on the
value of the n select lines.

 Q7

 Q0

 ...
 S2
 S1
 S0

S2 S1 S0 | Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7
0 0 0 | 1 0 0 0 0 0 0 0
0 0 1 | 0 1 0 0 0 0 0 0
0 1 0 | 0 0 1 0 0 0 0 0
0 1 1 | 0 0 0 1 0 0 0 0
1 0 0 | 0 0 0 0 1 0 0 0
1 0 1 | 0 0 0 0 0 1 0 0
1 1 0 | 0 0 0 0 0 0 1 0
1 1 1 | 0 0 0 0 0 0 0 1

Multiplexer

- n select lines
 - 2n input lines

- 1 output

One of the possible 2n inputs is chosen by the n select lines, and gated through
to the output of a multiplexer.

 D0

 D7

 ...

 S2 S1 S0

 Q

S2 S1 S0 Q
0 0 0 D0
0 0 1 D1
0 1 0 D2
0 1 1 D3
1 0 0 D4
1 0 1 D5
1 1 0 D6
1 1 1 D7

Mulitplexers are usually used for selection, but can also act as code detectors.

Half-Adder – adds two one-bit values

A B Sum Cout
0 0
0 1
1 0
1 1

Full Adder – incorporates a carry-in

A B Cin Sum Cout

0 0 0 0 0 Sum = A⊕B⊕Cin
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0 Cout = AB+(A⊕B)Cin
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

n-bit adder = n 1-bit adders

Carry-out of each adder = Carry-in of the adder for
 next two most significant bits being added

Arithmetic Logic Unit (ALU)

Ainv Binv Cin Op1 Op0 Result Cout Zero Overflow
0 0 X 0 0 a AND b
0 0 X 0 1 a OR b
0 0 0/1 1 0 a + b
0 1 1 1 0 a – b
1 1 X 0 0 a NOR b

 add (a + b + Cin) sub (invert b, Cin = 1, a + b + Cin)

 AND (a AND b) OR (a OR b) NOR (invert a, invert b, a AND b)

 Cout = 1 if (adder produces a carry-out == 1)

 Zero = 1 if (all bits of result == 0)

Overflow = 1 if (Cin XOR Cout == 1)

