CS240 Laboratory 4 Sequential Circuits

Basic Memory Circuits

Latch Flip-Flop

Single-bit memory, level-triggered
Also single-bit, but edge-triggered

SR (Set Reset) Latch

S	R	Q Q'
0	0	Qp Qp' remember
0	1	0 reset (clear)
1	0	1 set
1	1	unpredictable

SR latch uses 2 cross-coupled NOR gates:

A	В	(A+B) '
0	0	1
0	1	0
1	0	0
1	1	0

What does **unpredictable** mean? Notice in a NOR gate, if either input = 1 to a gate, its output = 0 (1 is a deterministic input)

You wouldn't usually try to set and reset at the same time (it doesn't make sense), but if you did, Q and Q' will both be 0.

However, when you go back to the remember state (S=R=0), Q and Q' will not stay at 0 0. The circuit passes through one of either the set or reset state on its way back to the remember state, and Q and Q' change to the complement of one another.

You cannot predict whether Q will be 1 or 0. The final state depends on which transitional state was sensed on the way back to remember.

Clocked SR Latch incorporates a clock input/level-sensitive

Output Q can change in response to S and R whenever the CK input is asserted.

D Latch (avoids unpredictable state)

D	Qnext
0	0
1	1

D Flip-Flop edge-sensitive

Output Q will only change value in response to D on the edge/transition of CK from high to low

Circuits using Flip-flops

Register n-bit memory, using n flip-flops, shared clock and clear inputs

Register File set of registers

- Write is the write control signal.
- Write register is the number of a register to be written with a new value
- Read register number 1 and 2 indicate which 2 registers can be read at data ports Read data 1 and Read data 2 at any given time
- clear and clock (CLR and CLK) are shared by all the 16 registers.
- CLR is active low

- 2 sets of 4 x 1 multiplexers select which 2 registers are currently being output at the two read ports.
- A decoder uses the write register number to select which of the 4 registers will receive a new value on a write.

RAM memory contains multiple flip-flops, organized into n-bit words, where each word can be accessed through use of an address

Finite State Machines elevator problem from lab assignment and traffic signal

