
CS240 Lab Assignment 6

GDB and C Pointers

You will be using the GNU debugger gdb when running C programs using pointers in this week’s and
upcoming labs and assignments. The purpose of a debugger is to allow you to see what is going on “inside” a
program while it executes—or what it was doing at the moment it crashed. You can also display values of
variables and examine contents of memory using gdb, which will be handy in understanding the effect of your
programs on the hardware of the system.

The following is a link to a gdb manual, which you may use for reference:

 http://www.gnu.org/software/gdb/documentation/

NOTE: Do not run your C programs directly on your own machine unless you are using wx (virtual machine).
Either	 log	 in	 to	 one	 of	 the	 Linux	 machines	 in	 173	 or	 the	 micro-‐Focus,	 or	 log	 in	 remotely	 to	 the	 server	 (or	
one	 of	 the	 other	 Linux	 machine,	 use	 the	 appropriate	 name):

 ssh –Y your_username@cs.wellesley.edu

1. For this exercise, answer any questions shaded in grey and hand in a hardcopy at the beginning of lab.

Create the following program using emacs and save as prime.c:

/* CS 240 program to check if a number is prime */

#include <stdio.h>

int test_prime(int num) {

 int i;
 int prime=1; //assume it is prime initially

 for (i=2; i<=num/2;++i) {

 if (num%i == 0) {
 prime = 0; // set to not prime
 break;
 }
 }
 if (prime)
 printf("%d is prime\n",num);
 else
 printf("%d is not prime\n",num);
}

int main() {
 int test1 = 5;
 int test2 = 12;

 test_prime(test1);
 test_prime(test2);
}

Before running the program, examine the code and explain how it works:

3. In order to run programs under gdb, they should be compiled with debugging symbols turned on (-g option):

 $ gcc -g -o gdb-example gdb-example.c

4. Run the program, and you should see the following output:

 $./gdb-example
 5 is prime

 12 is not prime

5. Now, run the program under gdb:

$ gdb gdb-example

GNU gdb (GDB) Red Hat Enterprise Linux (7.2-75.el6)
Copyright (C) 2010 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-redhat-linux-gnu".
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>...
Reading symbols from /home/jherbst/gdb-example...done.

You will see the (gdb) prompt, and you can now enter gdb commands to perform various actions. Observe and
verify the output as indicated:

(gdb) run

 Starting program: /home/jherbst/gdb-example
 5 is prime
 12 is not prime

 Program exited with code 021.

(gdb) quit

So, run is used to execute the program, and quit is used exit gdb.

6. The gdb debugger also allows you to walk through the program while it is running so that you
can trace its steps carefully. Start another gdb session:

$ gdb gdb-example

The break command sets a breakpoint--a location in the program where gdb should stop when it
gets to there. Breakpoints can be set at the beginning of a function or at specific lines in program
file. There are many things that can be done with breakpoints, such as making them conditional or
temporary. In this example, a common and simple usage case was shown that had gdb stop at the
beginning of the main function.

(gdb) break main

 Breakpoint 1 at 0x40054b: file gdb-example.c, line 27.

Then, when you run the program, it pauses execution at the breakpoint:

(gdb) run

 Starting program: /home/jherbst/gdb-example

 Breakpoint 1, main () at gdb-example.c:24
 24 int test1 = 5;

The highlighted line above is the next statement to be executed when the program is resumed (the
first statement in the main() function.

The print command displays the value of variables or expressions within the scope of the current
frame. So, since test1 is declared in main, you can print its value at this point:

(gdb) print test1

 $1 = 0

The $1 represents the variable. The current value is 0 because the statement initializing the value to
5 has not yet been executed. Execute a single statement by doing a step:

 (gdb) step

 25 int test2 = 12;

Now display test1 again:

 (gdb) print test1

 $1 = 5

Try displaying a variable outside the current frame (num is a local variable inside test_prime(), so it
is not understood at this point:

 (gdb) print num

 No symbol "num" in current context.

Execute another statement:

 (gdb) step

 27 test_prime(test1);

The step and next commands are both used to make gdb move forward in the program. For
statements that do not involve functions, the next and step commands are identical and merely
make gdb execute one statement. For statements that involve a function, however, the two
commands are different. next tells gdb to execute the entire function, while step tells gdb to move
inside the function.

So, the entering next at this point should execute the entire function test_prime(test1):
(gdb) next

 5 is prime
 28 test_prime(test2);

Next, start to step through the second invocation of test_prime():

 (gdb) step

 test_prime (num=12) at gdb-example.c:8
 8 int prime=1; //assume it is prime initially

Now that you are within the test_prime() function, you can also change the current context with the up
or down commands (this doesn’t change the point at which you are executing the program, but instead
allows you to display values defined within a different context or frame):

 (gdb) up

 #1 0x0000000000400571 in main () at gdb-example.c:28
 28 test_prime(test2);

Use the info command to display information about the current frame:

(gdb) info locals

 test1 = 5
 test2 = 12

Go back down to the test_prime() frame, and display information about the args (arguments) in the
current frame:

 (gdb) down

 #0 test_prime (num=12) at gdb-example.c:8
 8 int prime=1; //assume it is prime initially

 (gdb) info args

 num = 12

You can also use the frame command (with a numeric argument) to choose which stack frame to
switch to.

The backtrace command produces a list of the function calls, which is known as either a backtrace
or a stack trace.

(gdb) backtrace

 #0 test_prime (num=12) at gdb-example.c:8
 #1 0x0000000000400571 in main () at gdb-example.c:28

Reading backtraces is fairly straightforward. The data associated with each function call in the list
is known as a frame.

The outermost frame is the initial function that your program started in, and is printed at the bottom
of the list. Each frame is given a number (0, 1, 2, etc.). Following the frame number is an
associated memory address (where the instruction is actually stored in memory).

Then each frame contains the name of the function that was called, its arguments, the name of the
file where the function appears, and line number.

How many frames are there? Why that many?

Mark and label the following for the highlighted frames shown above:

• Outermost frame
• For each frame:

o frame number
o function name,
o function arguments (if any), and
o line number.

From what you have learned in class so far, what do you think the 0x00000000000400571 refers to
(if this value is not exactly the same as what you see, don’t worry):

Another convenience provided by gdb is to list a small segment of the code around where the
program is currently stopped so you can see which statements have been executed and which ones
are about to be:

(gdb) list

3 #include <stdio.h>
4
5 int test_prime(int num) {
6
7 int i;
8 int prime=1; //assume it is prime initially
9
10 for (i=2; i<=num/2;++i) {
11
12 if (num%i == 0) {

Step through several more instruction, following execution of the program.

To finish the program, enter cont to continue execution to the end:

(gdb) cont

 Continuing.
 12 is not prime

 Program exited with code 021.

	
(gdb) quit

	

2. Investigate the use of pointers in a C program, to give you some more practice with editing and
compiling C programs, and understanding how pointers work.

- On Bitbucket, fork the pointers repository https://bitbucket.org/wellesleycs240/cs240-pointers/fork	

 (just once, then you will also have all the files for this week’s lab and assignment) and add
bpw as admin.

The following commands are entered at the command-line prompt on a Linux machine:

- From your account on a Linux machine, clone the cs240-pointers:

 hg clone ssh://hg@bitbucket.org/yourbitbucketname/cs240-pointers

- Compile tour.c:

 make tour

- Open tour.c using emacs, perform the experiments it describes, and record your answers in
that file as comments. Remember that to run the program after compiling:

 ./tour

Submit a hardcopy of tour.c with your added comments.	

