Memory Hierarchy: Cache

Memory hierarchy

Cache basics

Locality

Cache organization
Cache-aware programming

Program, Application
Programming Language

Compiler/Interpreter

Software

Operating System

[

Instruction Set Architecture

N/

Microarchitecture

Digital Logic

Devices (transistors, etc.)

Hardware

How does execution time grow with SIZE?

int[] array = new int[SIZE];

fillArrayRandomly (array) ;

int s = 0;

for (int 1 = 0; i < 200000;

for (int j = 0; j < SIZE;
17

s += arraylj

i++) |
) Ao
TIME

SIZE

3

Solid-State Physics

reality beyond Of...)

a5

40

35

30

Time

25

20

15

10

0 8000 9000

SIZE

11/5/15

Processor-Memory Bottleneck

Processor performance
doubled about
every 18 months

Bus bandwidth

CPU | Reg Cache

Core 2 Duo:
Can process at least
256 Bytes/cycle

Solution: caches

evolved much slower

T

Core 2 Duo:
Bandwidth
2 Bytes/cycle

Latency

100 cycles

Main
Memory

Cache

English:

n. a hidden storage space for provisions, weapons, or treasures
v. to store away in hiding for future use

Computer Science

n.a computer memory with short access time used to store
frequently or recently used instructions or data

v. to store [data/instructions] temporarily for later quick retrieval

Also used more broadly in CS: software caches, file caches, etc.

General Cache Mechanics

CPU
V4
Cache || 8 || 9 [24 |f 3~
Data is moved
in block units
Memory || © 1 2 3
[a 5 6 7
8 9 10 11
12 13 14 15
00 000O0OCGOIOGOOIOOIONOINOIO

Block: unit of data

in cache and memory.
(a.k.a. line)

Smaller, faster, more expensive.
Stores subset of memory blocks
(lines)

Larger, slower, cheaper.
Partitioned into blocks (lines).

Cache Hit
CPU

Request: 14
Cache [8 f[o [24 J[3 |
Memory || 0 1 2 3
[4 5 6 7

8 9 10 11

12 13 14 15

000 000OCGOIOEONONONOIEOINOIO

1. Request data in block b.

2. Cache hit:
Block b is in cache.

11/5/15

Cache Miss

CPU
Request: 12 1. Request data in block b.
2. Cache miss:
Cache ([8 || 12 J[24 J{ 3 | block is not in cache

3. Cache eviction:
Evict a block to make room,
maybe store to memory.

Request: 12

Memory (| 0 1 2 3 4. Cache fill:
4 |5 6 7 Fetch block from memory,
s I o 10 11 store in cache.
12 |[13 |[14 15
00 0000OCONOEOOIOSNONOSNOIOS

Placement Policy: Replacement Policy:
where to put block in cache which block to evict

Locality: why caches work

Programs tend to use data and instructions at addresses near or
equal to those they have used recently.

Temporal locality:
Recently referenced items are likely C 7

to be referenced again in the near future.

Spatial locality:
Iltems with nearby addressesare likely ﬁ

to be referenced close together in time.
LT Jblock

How do caches exploit temporal and spatial locality?

10

Example: Locality?

sum = 0; What is stored in memory?

for (i = 0; i < n; i++) {
sum += al[i];

}

return sum;

Data:
Temporal: sum referenced in each iteration
Spatial: array a [] accessed in stride-1 pattern
Instructions:
Temporal: execute loop repeatedly
Spatial: execute instructions in sequence

Assessing locality in code is an important programming skill.

Locality Example #1

row-major M x N 2D array in C

int sum array rows(int a [M] [N] F{

int i, j, sum = 0;
, ‘) a[0j[0] a[0](1] al0][2] a[0][3]
for (1 = 0; 1 < M; i++) { al1]{o] al1][1] al1](2] a[1](3]
for (j = 0; J < N; j++) | al2][0] al2](1] al2][2] al2](3]

sum += al[i][]j];
}
}

return sum;

11

12

11/5/15

Locality Example #2

row-major M x N 2D array in C

int sum_array_cols(int a [M] [N] £y

sum += a[i][]];
}
}

return sum;

int i, j, sum = 0;
))) alo][o] a[o][1] a[0][2] a[0][3]
for (3 = 0; J < N; j++) { a1](0] a1](1] al1][2] a[1](3]
for (i = 0; 1 < M; i++) | al2][0] al2](1] al2][2] al2][3]

13

Locality Example #3

int sum_array_3d(int a[M][N][N]) {
int i, j, k, sum = 0;

for (1 = 0; 1 < N; i++) {
for (3 = 0; 3 < N; j++) |
for (k = 0; k < M; kt++) {
sum += a[k][1] [J];
}
}
}

return sum;

What is "wrong" with this code?
How can it be fixed?

14

Cost of Cache Misses

Huge difference between a hit and a miss
Could be 100y, if just L1 and main memory

99% hits could be twice as good as 97%. How?
Cache hit time of 1 cycle, miss penalty of 100 cycles

Mean access time
97% hits: 1 cycle + 0.03 *100 cycles =4 cycles
99% hits: 1 cycle + 0.01 *100 cycles =2 cycles

hit/miss rate

This is why “miss rate” is used instead of “hit rate”

Cache Performance Metrics

Miss Rate
Fraction of memory accesses to data not in cache (misses / accesses)
Typically: 3% - 10% for L1; maybe < 1% for L2, dependingon size, etc.

Hit Time

Time to find and deliver a block in the cache to the processor.
Typically: 1 - 2 clock cycles for L1; 5 - 20 dock cycles for L2

Miss Penalty

Additional time required on cache miss =main memory access time
Typically 50 - 200 cycles for L2 (trend:increasing!)

10

11/5/15

memory hierarchy

why does it work?

explicitly
program-

small, fast, controlled

power-hungry,

A registers
expensive

program sees “memory”;
hardware manages caching
transparently

L1 cache
(SRAM, on-chip)

L2 cache
(SRAM, on-chip)

\

L3 cache
(SRAM, off-chip)

main memory
(DRAM)

persistent storage

large, slow, -
power-efficient,
cheap

(hard disk, flash, over network, cloud,

etc.)

Cache Organization: Key Points

Block
Fixed-size unit of data in memory/cache

Placement Policy
Where should a given block be stored in the cache?

= direct-mapped, set associative

Replacement Policy

What if there is no room in the cache forrequested data?
= |east recently used, most recently used

Write Policy

When should writes update lower levels of memory hierarchy?
= write back, write through, write allocate, no write allocate

(byte) ™
address Memory
Blocks
Divide memory into fixed-size aligned blocks. block
power of 2 0
Example: block size =8 00001000
full byte address block
00010010 1
00010000
00010001
Block ID offset within block ooo1ont | Ee
address bits - offset bits log(block size) FAPSTEr 2
00010110
00010111
00011000
block
3

remember withinSameBlock? (PointersLab)

juo 213y wouy ApuaIaYIp JOPIO sassaIppe Suimelp 190N

Placement Policy

Memory Mapping:

Block 1D index(Block ID) =2??
0000
0001
0010
0011
0100 Cache
0101 Index
0110 00
0111 01
1000 10
1001 11
1010

S=#slots=4

1011 Small, fixed number of block slots.

1100
1101
1110
1111

Large, fixed number of block slots.

11/5/15

Placement: Direct-Mapped

Memory Mapping:

Block ID index(Block ID) = Block
0000

ID mod S

0001 (easy for power-of-2 blocksizes...)

0010
0011
0100
0101 Index
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Cache

S

=N
moRro

=#slots=4

21

Placement: mapping ambiguity

Memory Mapping:
B'°E';;3 index(Block ID) =Block ID mod S
0001
0010
0011
0100 Cache
0101 Index
0110 00
0111 01
1000 10 S =#slots=4

1001
1010
1011
1100
1101 Which blockis in slot 2?
1110

1111

11

22

Placement: Tags resolve ambiguity

Memory Mapping:

Block ID index(Block ID) =Block
0000
0001
0010
0011
0100
0101 Index Tag
0110 00
0111 11

Cache

%

1000 01

1001 01

1010

1011

1100

1101

1110 Block ID bits not used
1111

-
= o R

ID mod S

Data

forindex.

23

Address = Tag, Index, Offset

What slot in the cache?

Disambiguates slot contents. o
Where within a block?

a-bit Address | Tag | Index | Offset |
(a-s-b) bits s bits b bits

Block ID bits - Index bits log, (# cache slots)
Tag Index

1/

00010010 full byte address

a

Block ID Offset within block
Address bits - Offset bits log,(block size) =b

~_"

address bits

11/5/15

Placement: Dire

Block ID

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory

(AT

ed

Why not this mapping?
index(Block ID) =Block ID /S

(still easy for power-of-2 block sizes...)

Cache

Index

00
01
10
11

25

A puzzle.

Cache starts empty.
Access (address, hit/miss) stream:

(10, miss), (11, hit), (12, miss)

What could the block size be?

20

Placement: direct mapping conflicts

Block ID

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

What happens when accessing
in repeated pattern:
0010, 0110, 0010, 0110, 0010...?

cache conflict

Every access suffers a miss,
evicts cache line needed
by next access.

27

Placement: Set Associative

Index per set of block slots.
Store block in any slot within set.

1-way 2-way
8 sets, 4 sets,
1 block each 2 blocks each
Set Set
0

1 feereerereninnnns

2

N A WN R O

direct mapped

sets
S =#3leqS in cache
Mapping:

index(Block ID) =Block ID mod S

4-way 8-way
2 sets, 1 set,
4 blocks each 8 blocks
Set Set
0
0

fully associative

2

11/5/15

Example: Tag, Index, Offset?

4 pit Address | Tag | Index |Offset |
Direct-mapped tag bits
4 slots set index bits

2-byte blocks block offset bits

index(1101) =

Example: Tag, Index, Offset?

E-way set-associative

Sslots 16-bit Address | Tag | Index | Offset |
16-byte blocks
E = 1-way E = 2-way E = 4-way
S =8 sets S =4 sets S =2 sets
Set Set Set
)
1 0
2 0
3 1
4 2 o el
5 1
6 3
7
tag bits tag bits tag bits

set index bits
block offset bits
index(0x1833)

set index bits
block offset bits
index(0x1833)

set index bits
block offset bits
index(0x1833)

Replacement Policy

If setis full, what block should be replaced?
Common: least recently used (LRU)

(hardware usually implements “not most recently used”)

1-way associativity 2-way associativity 4-way associativity
8 sets, 1 block each 4 sets, 2 blocks each 2 sets, 4 blocks each

Set Set Set

0

1 0

2 0

S — '

4

5 1

6

7

direct mapped

31

Another puzzle.

Cache starts empty, uses LRU.
Access (address, hit/miss) stream

(10, miss); (12, miss); (10, miss)

associativity of cache?

32

11/5/15

General Cache Organization (S, E, B)

Powers of 2 ————————> E lines perset (“E-way”)
A

t
. r \/se
[It Jooeee] <l

| I Jeeee] |
Sses{ | | Jeoooe|]

block/line

®eccccccccccccccccccccccccccccnce

I " I""'I I cachesize:

\ Sx E x B data bytes
/ \ address size:
t+s+b address bits
| |_t!_| ofr]2]-eeneen B-1 |

valid bit

B =2b bytes of data per cache line (the data block)

Cache Read

E=2¢lines per set
A

Locate set by index
Hit if any line in set:
is valid; and

has matching tag

- N Get data at offsetin block

[I foeeed |

[I f+eee1 |
s=2ssets< [Il Joooed]

©eccccccccccccscscsscscccssccce

| O
v N

Address of byte in memory:
| t bits | s bits Ibbitsl

tag set block
index offset

B

/ \
N
|| w [P] |B.1||

valid bit

data begins at this offset

B = 2P bytes of data per cache line (the data block)

34

Read: Direct-Mapped (E = 1)

Direct-mapped: One line per set
Assume: cache block size 8 bytes

(Address of int:
|| w | ofe]a]e]e s |6|7|| thits_] 0.01 100

(Bl onaan a0 —

S =25 sets
[0 G EEEEEEEL
L [= JeltlE 1]

Read: Direct-Mapped (E = 1)

Direct-mapped: One line per set
Assume: cache block size 8 bytes

valid? + match?: yes = hit

Address of int:

| |
[
[[]] LR
2

t bits 100

int (4 Bytes) is here

If no match: old line is evicted and replaced

block offset

30

Assume sum, | jin registers
Address of an aligned element
ofa: a ATTTY

Example (E=1)

Ssume: cold (empty) cache
3-bit setindex, 5-bit offset

.arrr roe 000

int sum_array rows (double a[16]'[16])J/
int i, j;

double sum = 0; d.. cc cc y
2,0: aa...a000 000 00000
for (1 = 0; 1 < 16; it++) e —
for (3 =0; j < 16; Jj++) \010 T Tl ea s
sum += al[i] []J];
return sum; 0410510610,7
} 08lo9loalob

0c10,di0,ei0,f

int sum_array cols (double a[16][16]){ 10311712713 30,31732 33

int i, J: 147151167117
double sum = 0;

1811911al1b
for (3 = 0; 3 < 16; F++) /Lc 1dyle Lf
for (1 = 0; i < 16; it++)

sum += a[i] [j];
return sum; 32 bytes =4 doubles 32 bytes =4 doubles

4 misses per row of array every access a miss

4*16 = 64 misses 16*16 = 256 misses

block = 16 bytes; 8 sets incache
How many block offset bits?
How many set index bits?

Example (E=1)

int cliotprod(int x[8], int y[8]) { Address bits:
int sum = 0;
int 1i; B=
S=
for (i =0; i < 8 i++)
sum += x[1]*y[i];
return sum; 0:
} 128:
160:
X[0] [1]yx[2]5x13]) X[0]px[1]px[2]yx[3]
X415 X611 7]
if xand y have aligned if xand y have unaligned violhyialyi21hyi3)
starting addresses, starting addresses,

yl4Tny[shy(6]1y(7]

e.g.,&x[0] = 0, &y[0] = 128 e.g.,&x[0] = 0, &y[0] = 160

Read: Set-Associative (Example: E = 2)

E =2: Two lines per set
Assume: cache block size 8 bytes Address of int:

[this] 0.01 [100]

L] Ca] CELEELEELET| ([G] FEEE B |
1]

|| tag ||o|1|z|3|4 |5|e|7|| | [|PTEREI*] |6|7||
|

find set

.
|[] C=1J PLEEEET|

[C= 1 LG

R YN

.
(oj==joonnoaoa)|[of=m|aaaanana]

Read: Set-Associative (Example: E = 2)

E=2: Two lines per set
Assume: cache block size 8 bytes

Address of int:

compare both

valid? + |match: yes = hit

|
| | tag IIOI1|2|3|4|5|6|7|||| g | [ofe]2]3]4]s]e |7]
T

block offset
int (4 Bytes) is here

If no match:
* Onelinein setisselected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...

40

11/5/15

10

Example (E = 2)

float dotprod(float x[8], float y[8])
{

float sum = 0;
int i;
for (1 = 0; i < 8 i++)

sum += x[i]*y[i];
return sum;

2 blocks/lines per set

Ifxandy aligned,
. 8(0] = 0, &y10] - 128 0] 11121 i3] 01y [y 21ty 3]

can still fit both because each st X[4] IX[5]1x[6] IX[7] |y [414y [51ly 614y [7]
has space for two blocks/lines

Types of Cache Misses

Cold (compulsory) miss
first access to a block

Conflict miss
cache has space for all needed blocks, but multiple blocks map to same slot
e.g., referencing blocks 0, 8, 0, 8, ... would miss every time
increasing associativity can reduce conflict misses

Capacity miss

working set of active cache blocks is larger than the cache

4 sets
41
What about writes?
Multiple copies of data exist:
L1, L2, possibly L3, main memory
Write-hit policy
Write-through: write immediately to memory, all caches in between.
Write-back: defer write tomemory until line is evicted (replaced)
Need a dirty bit to indicate if line is different from memory or not
Write-miss policy
Write-allocate: load into cache, updateline in cache.
Good if more nearby writes or reads follow
No-write-allocate: just write immediately to memory.
Typical caches:
Write-back + Write-allocate, usually
Write-through + No-write-allocate, occasionally
43

Write-back, write-allocate example

eax = 1. mov ST %ecx
ecx=T 2. mov $U, %edx
edx =U 3. mov SOXFEED, (%ecx)
a. MissonT
Cache [u] OXCAFE Jo]
/ /
tag dirty bit
Memory T OXFACE |
ul | OXCAFE |

44

11/5/15

11

Write-back, write-allocate example

eax 1. mov $T, %ecx

ecx=T mov $U, %edx

edx =U 3. mov SOXFEED, (%ecx)

a. MissonT

b. Evict U (clean: discard).

Cache OXEEED M c. Fill T (write-allocate).
A A
g

N

d. Write Tin cache (dirty).
/ 4. mov (%edx), %eax
Miss on U.

ta) dirty bit a

Memory T OxFACE]
ul | OXCAFE |

Write-back, write-allocate example

eax = OXCAFE 1. mov ST, %ecx
ecx=T 2. mov $U, %edx
edx =U 3. mov SOXFEED, (%ecx)

a. MissonT
b. Evict U (clean: discard).

Cache | U | OXCAFE M c. Fill T (write-allocate).
A A
g

d. Write Tin cache (dirty).
/ 4. mov (%edx), %eax
Miss on U.

tay dirty bit a

b. Evict T (dirty: write back).

c. Fillu.
d. Set %eax.
Memory T OXFEED]| > DONE
ul | OXCAFE |

Example Memory Hierarchy

Intel Core i7 circa 2011
Processor package

I Core0 Core 3 L1 i-cache and d-cache:
32 KB, 8-way,
Access: 4 cycles
L1 L1 L1 L1 L2 unified cache:
d-cache| |i-cache d-cache| |i-cache 256 KB, 8-way,

Access: 11 cycles

L2 unified cache L2 unified cache

L3 unified cache:

I T 8 MB, 16-way,
| | Ac -40 cycles
L3 unified cache .
(shared by all cores) Block size: Q4 bytes for
s all caches.
slower, but
Main memory more likely
to hit

Aside: software caches

Examples
File system buffer caches, web browser caches, database caches, network
CDN caches, etc.

Some design differences
Almost always fully-associative
so, no placement restrictions
index structures like hash tablesare common (for placement)
Often use complex replacement policies
misses are very expensive when disk or network involved
worth thousands of cycles to avoid them
Not necessarily constrained to single “block” transfers
may fetch or write-back in larger units, opportunistically

11/5/15

12

11/5/15

Cache-Friendly Code

Locality, locality, locality. < locality
Programmer can optimize for cache performance
Data structure organization
Data access patterns
Nested loops
Blocking (see CSAPP 6.5)
All systems favor “cache-friendly code”
Performance is hardware-specific
Cache size, line size, associativity, etc.
Generic rules still capture most of advantages
Keep working set small (temporal locality)
Use small strides (spatial locality)
Focus on inner loop code

13

