A tiny ISA and data path

Instruction

Fetch and Registers
Decode

Instruction Set Architecture (HW/SW)
Instructions processor
* Names
* Encodings nstruction Encoded
* Effects Logic Instructions

e Arguments

Local storage
* Names
e Sizes
¢ How many

Large storage
¢ Addresses, Locations

Computer

A tiny ISA and data path

- Word size =16 bits, data bus = 16 bits.
* Register size = 16 bits.
¢ ALU and memory handle 16-bit values.

- Memory is byte-addressable.

- 16 registers: RO - R15

* RO always holds hardcoded 0
¢ R1 always holds hardcoded 1

0
* R2 - R15: general purpose
- Instructions are 1 word in size. 1
- Separate instruction memory.
2

- Each instruction executes in
a single clock cycle.
- Special Program Counter (PC) register 255
¢ holds address of next instruction to execute.

Address

First instruction,
low-order byte

First instruction,
high-order byte

Second instruction,
low-order byte

256t instruction,
high-order byte

Instruction Fetch

Fetch instruction from memory.
Increment program counter (PC) to

point to the next instruction.
dAdd
2 ——
Instruction
Memory
Read |
pC Address

Instruction

10/1/15

Arithmetic Instructions and Encodings
op |Rs IRt [Rd |

0010 0011 0110 1000

ADDR3, R6,R8

16-bit Encoding

S

ADD Rs, Rt, Rd Rd :=Rs +Rt 0010 0-15 0-15

SUB Rs, Rt, Rd Rd :=Rs - Rt 0011 0-15 0-15 0-15
AND Rs, Rt, Rd Rd :=Rs & Rt 0100 0-15 0-15 0-15
OR Rs, Rt, Rd Rd :=Rs [Rt 0101 0-15 0-15 0-15

Instruction Decode, Register Access, ALU

4 [Control
Unit
Write Enable
N
N Read Addr 1 Read \16
\1\6 \4\ Read Addr 2 ez N\
Instruction K Register File
N\ | Write Addr Read \16
\1\6 Write Data EER 2 \

ALU control

overflow

SALU [zer0

ALU result

Memory Instructions and Encodings
op [Rs [Rt [Rd |

SW R6' 8(R3) 0001 0011 0110 1000

16-bit Encoding
ercon—Juemins———Jonmeelne T
LW Rt, offset(Rs) Rt := Memory[Rs +offset] 0000 0-15 0-15 offset

SW Rt, offset(Rs) Memory[Rs + offset] := Rt 0001 0-15 0-15 offset

Memory access

Control

How can we support arithmetic
and memory instructions?

What's shared?

Unit

Write Enable

ALU control

Mem Write

Address

Write

I———' Data

Data Memory

Read
Data

4
\\ Read Addr1 o4
\16 \4 Read Addr 2 e
ST N . .
Inst Register File
Write Addr Read
Data 2
\16 Write Data
N NI RS
N N extend) \

10/1/15

MUXes to the rescue!

Mem Op
N Control
\ Unit
Write Enable ALU control
\4 MemWrite
< Read Addr1 g g \16
\16 . Read Addr 2 aap \ 16 Trg; Address
ST N . .
Inst L|-§ .Reglster File ALU N 16| Data Memory
\4 S [Write Addr Read |16 = N
AY T Data2 IS g Write Read
N\ Write Data Data Data
N [
& (sign) 16 _
extend L]

9

More questions:

Next time:
What's inside the Control Unit?

How do we support programs with conditionals and loops?

Next few weeks:

How do these instructions relate to the programs | write?

10

Controlinstructions and Encodings

0111 0001 0010 1110

16-bit Encoding

et emis————Lopoie e s

If Rs == Rt then

PC:=PC+2+ t*2
Hlse OS2 5111 045 045 offset

PC :=PC+2(normal)

BEQ Rs, Rt offset

IMP offset PC :=offset*2 1000 O ff s e t

Use these to implement: if-else, loops, etc.

11

Compute branch target

Shift left +
by 1
¢ Control
A} w ALU control
—lWrite Enable

Read Addr 1

Read
Read Addr 2 Datal

Register File
Write Addr Read 1‘6

Data 2
Write Data

extend

12

10/1/15

Make branch decision

Instruction
Memory

Read

Address

Shift left

by 1
¢ Control
) w
‘lWrite Enable
4
\\ Read Addr 1 pooy
O Read Addr 2 Data 1
A N . .
Inst Register File
4 Write Addr Read |16
Data 2
Write Data

extend

Branch?

ALU control

13

All together now...

Instruction

Shift left
by 1

Branch?
¢ Control)
A} w ALU control
‘lWrite Enable
\4 MemWrite
- Read Addr 1 Read
N Read Addr 2 Data 1 Address
A) N . .
Register Fil
Inst egiste ® Data Memory
4 Write Addr Read 16l
6 Data 2 |" Write Read
—V» Write Data Data Data
— |

14

10/1/15

