Floating-point numbers

Fractional binary numbers
IEEE floating-point standard
Floating-point operations and rounding
Lessons for programmers

Many more details we will skip (it’s a 58-page standard...)
See CSAPP 2.4 for a little more

Fractional Binary Numbers

Value	Representation
5 and 3/4 | 101.11₂
2 and 7/8 | 10.11₁₂
47/64 | 0.10111₁₂

Observations
Shift left =
Shift right =
Numbers of the form 0.11111...₂ are...?

Limitations:
Exact representation possible only for numbers of the form x * 2^y,
where x and y are integers.
Other rationals have repeating bit representations
1/3 = 0.33333...₁₀ = 0.01010101[01]₁₀

Fixed-Point Representation

Implied binary point. Example:
b₁ b₂ b₃ b₄ b₅ [.] b₆ b₇ b₈

Same hardware as for integer arithmetic.
b₁ b₂ b₃ b₄ b₅ []

Fixed point = fixed range and fixed precision
range: difference between largest and smallest representable numbers
precision: smallest difference between any two representable numbers
IEEE Floating Point

Analogous to scientific notation
12 000 000 1.2 x 10^7 1.2e7
0.000 001 2 1.2 x 10^-6 1.2e-6

IEEE Standard 754 used by all major CPUs today
IEEE = Institute of Electrical and Electronics Engineers

Driven by numerical concerns
Rounding, overflow, underflow
Numerically well-behaved, but hard to make fast in hardware

Floating Point Representation

Numerical form:
\[V_{10} = (-1)^s \times M \times 2^E \]

Sign bit \(s \) determines whether number is negative or positive
Significand (mantissa) \(M \) normally a fractional value in range [1.0,2.0)
Exponent \(E \) weights value by a (possibly negative) power of two

Representation:
MSB \(s \) = sign bit \(s \)
exp field encodes \(E \) (but is not equal to \(E \))
frac field encodes \(M \) (but is not equal to \(M \))

Normalization and Special Values

\[V = (-1)^s \times M \times 2^E \]

“Normalized” = \(M \) has the form 1.xxxxx
As in scientific notation
0.011 x 2^3 = 1.1 x 2^1, latter is more compact
Do not store the (guaranteed) leading 1.

Special values: (How do we represent 0.0? 0/0?)
zero: \(s = 0 \), exp == 00...0, frac == 00...0
+inf, -inf: exp == 11...1, frac == 00...0
1.0/0.0 = +inf, -1.0/0.0 = -inf, 1.0/-0.0 = -1.0, 0.0/0.0 = 0.0

NaN (“Not a Number”): exp == 11...1, frac != 00...0
sqrt(-1), \(\infty - \infty \), etc.

Denormalized/subnormal values (near 0.0) not covered here.
Floating Point Arithmetic

\[V = (-1)^s \cdot M \cdot 2^E \]

```c
double x = ..., y = ...;
double z = x + y;
```

1. Compute exact result.
2. Round, to fit:
 - Overflow exponent if it is too wide for `exp`.
 - Drop LSBs of significand if it is too wide for `frac`.
 - Underflow if nearest representable value is 0.

Lessons for programmers

```c
V = (-1)^s \cdot M \cdot 2^E
```

- `float` is a real number ≠ `double`
- Rounding breaks associativity and other properties.

```c
double a = ..., b = ...;
...
if (a == b) ...
```

- `if (abs(a - b) < epsilon) ...`

More shortly...