WELLESLEY CS 240

Integer Representation

Representation of integers: unsigned and signed
Sign extension

Arithmetic and shifting

Casting

But first, encode deck of cards.

52 cards in 4 suits
How do we encode suits, face cards?

What operations should be easy to implement?
Get and compare rank
Get and compare suit

5]

f0 & [30 & 3% & [I0 &[22 & [35 & 8

oy
L3
o

<o
<
e
tos
<
<
e
<
<
s

LR RN K
i o 30 0[50 a]laaieaieallenl]

5|
o)
L d
o
0‘0

[X HEEHEAT KX
lvw Svv (o |vw vw|ve
v v 've
v YV vy | ve
HEXS X X B R EXY
20 0[50 ¢ 5o o ZQ‘Q 3¢ ¢

2e

=
|
<
|

9 DG‘GE

"D G‘G LAl

<>

.|
loas
EfS

=
<o
.
e
R RIS
™
.
.
&
.
«
S
5
-
ooes
ot %!
s

HNEEH KX EXHEX) KX KX

Two possiblerepresentations

52 cards — 52 bits with bit corresponding to card setto 1

O O T T T T T T T T T T I
52 bits in 2 x 32-bit words

“One-hot” encoding
Two 32-bit words
Hard to compare values and suits
Large number of bits required

4 bits for suit, 13 bits for card value —17 bits with two setto 1
O T T

Pair of one-hot encoded values
Fits in one 32-bit word
Easier to compare suits and values
Still space-inefficient

Two better representations

Binary encoding of all 52 cards — only 6 bits needed

Number each card HEEEEEEE
Fits in one byte

low-order 6 bits of a byte
Smaller than one-hot encodings.

How can we make value and suit comparisons easier?

Binary encoding of suit (2 bits) and value (4 bits) separately

Number each suit | I I | I | I | |
Number each value

. suit value
Fits in one byte

Easy suit, value comparisons

9/8/15

WELLESLEY CS 240

mask: a bit vector that, when bitwise
ANDed with another bit vector v, turns
all but the bits of interestin v to 0

Compare Card Suits

}

static final SUIT MASK = 0x30;

boolean sameSuit (char cardl, char card2) {

return 0 == ((cardl & SUIT MASK) * (card2 & SUIT_MASK));
// return (cardl & SUIT MASK) == (card2 & SUIT_ MASK) ;

Compare Card Values

all but the bits of interestin vto0

mask: a bit vector that, when bitwise
ANDed with another bit vector v, turns

static final VALUE MASK = 0x0F;

works even if value
is stored in high bits
boolean greaterValue(char cardl, char card2) {

return (cardl & VALUE MASK) > (card2 & VALUE_MASK));
}

\\’
SUIT MASK = 0x30 = [0]|O |11 oo oo} \ equivalent

suit value

char hand[5]; // represents a 5-card hand
char cardl, card2; // two cards to compare
cardl = hand[0];

card2 = hand[1];

if (sameSuit(cardl, card2)) { ... }

Encoding Integers in a fixed number of bits

Positional representation,

Two flavors:
unsigned (C N) — non-negatives only
signed (c Z) — both negatives and non-negatives

fixed-width representations: W bits wide (W for word or width) m

Only 2% distinct bit patterns...
Cannot represent all the integers
Unsigned values: 0 ... 2W-1
Signed values: -2w-1 .., 2w-1-1

fixed # of positions.

Terminology:

“Most-significant” or
“high-order” bit(s)

“Least-significant” or
“low-order” bit(s)

MSB 0110010110101001 LB

VALUE MASK = 0xOF = [0 JOJOJO[1f1]1]1]

suit value

char hand[5]; // represents a 5-card hand
char cardl, card2; // two cards to compare
cardl = hand[0];

card2 = hand[1];

if (greaterValue(cardl, card2)) { ... }

Unsigned modular arithmetic, overflow

Examples in 4-bit unsigned representation.

15

1111
1110
1101
1100

11+2 = 0000

13+5

0001
0010
0011

111011 0100
0101
0110

1000 0111

% + y in N-bit unsigned arithmetic is (x + y) mod 2" in math

unsigned overflow = "wrong" answer = wrap-around
= carry 1 out of MSB = math answer too big tofit

11

WELLESLEY CS 240

Overflow: Unsigned

Addition overflows if and only if a cany bit is dropped.

111
15 1111 15 ——2 0

1111 0000
+2 + 0010 13 / 1110 0001 2
1101 0010
7 10001 12 [1100 oot |3
Overflow.
1 11\ 1011 0100

1010
1001
1000

0101
0110

0111

Modular Arithmetic

Signed Integers: Sign-Magnitude? ! ! !

Most-significant bit (MSB) is sign bit
0 means non-negative
1 means negative

Rest of bits are an unsigned magnitude

8-bit sign-and-magnitude:
0x00 = 00000000 represents
O0x7F = 01111111 represents
0x85 = 10000101 represents

0x80 = 10000000 represents

Max and min for N-bit sign-magnitude?

What is weird about sign-magnitude representation?

Sign-Magnitude Negatives

Another problem: cumbersome arithmetic.
Example:
4-31=4+(3)

0100
+1011

What about zero?

Maybe sign-magnitude is not such a good idea...

14

Two’s complement representation
forsigned integers

w-bit representation

3("‘"1)... ; 2—?’ 2_2 2_1 ;\weight
w-l .. i .. 3 2 1 0 |« position

Positional representation, but
most significant position has negative weight.

9/8/15

WELLESLEY CS 240

8-bit representations

00001001

11111111

10000001

00100111

1 11
2 0010 -2 1110
+3 +0011 +-3 +1101
5 0101 -5 1011

111

-2 1110 2 0010
+3 +0011 +-3 +1101
1 10001 -1 1111

Two’s complement: addition Just Works

1111 0000
1110 0001
0010

Modular Arithmetic

4-bit unsigned vs. 4-bit two’s complement
1011

1x23+0x22+1x2 +1x2° 1x-23+0x22+1x21+1x2°

P
11 <- - (math) difference =16 =2*]— -->-5

15 0

0000

1111
1110

1111
1110
1101
1100

0000

0001
0010
0011

0001
0010
0011

_g 1011 0100
0101
0110

11 \1011 0100
0101
0110

1000 0111

21

Overflow: Two’s Complement

Addition overflows if and only if the inputs have the same sign but the output does not.
if and only if the carry in and out of the sign bit differ

111
-1 1111 -1 0
1111 0000
ﬁ + 0010 _3 /1110 0001 \42
1 0001 "41$?- ﬁﬁl 3
No overflow.
_5 |01 0100 J, 4
11 0101
6 0110 -6 0110
+3 + 0011
— —= w_-8 7 v
1’4 1001 .)
7 Overflow, Modular Arithmetic

Some CPUs raise exceptions on overflow

C and Java cruise along silently... Oops? >

9/8/15

WELLESLEY CS 240 9/8/15

A few reasons two’s complement is awesome Anotherview

Better be true! How should we represent 8-bit negatives?
X+ -x = 0 * For all positive integers x and widths n,
the n-bit representations of x and —=x must sum to zero.

* Arithmetic should be “the same.”
N-bit negative one is N ones.

@ 00000001 00000010 00000011
+ + +

Complement rules: 00000000 00000000 00000000

x + ~x = -1

~x + 1 = -x * Find a rule to represent —x where that works...

Subtraction is just addition:

4 -3==4+(-3
-3) Great news

for hardware.

20

. . . Values To Remember
Conversion Visualized

Two’s Complement — Unsigned

Ordering Inversion UMax 7] Unsign?d Values Two’s Complement Values
UMax -1 UMin = 0 TMin = —2wt
Negative — Big Positive 000..0 100..0
UMax = 2% -1 TMax = PR |
_ TMax +1 Unsigned 111..1 011..1
Max TMax Range Negative one
111..1 OxF...F
Values for W =32
-m“
2’s Complement 0 0 UMax 4,294,967,29% FF FF FF 11111111 11111111 11111111 11111111
Range 4@ N TMax 2,147,483,647 7F FF FF FF 01111111 11111111 11111111 11111111
2 ¢ TMin -2,147,483648 80 00 00 00 10000000 00000000 00000000 00000000
1 1 FF FF FF FF 11111111 11111111 11111111 11111111
™in ® 0 0 00 00 00 00 00000000 00000000 00000000 00000000

2 29

WELLESLEY CS 240

Sign Extension

Sign Extension
Fill new bits with copies of the sign bit.

00000010 sbit2

0000000000000010 6wbit2

11111100 st

11711111111111100 16bit 4

Casting from smaller to larger signed type does sign extension.
31

Replicate most significant bit on left
Why is this useful? Rain check!

00000010 stz
0000000000000010 16it2
11111100 sbic
???727?7727211111100 16bit 4
Try some possibilities...
Shift Operations
Left shift: X <<y Argument x 01100010
Shift bit vector x left by y positions x<<3 00010000
Throw away extra bits on left
Fill with Os on right Logical: x>>2 | 00011000
Right shift: X >>y IArithmetic: x >> 2] 00011000
Shift bit vector x right by y positions
Throw away extra bits on right
Fill with 222 on left Argument x 10100010
Logical shift x<<3 00010000
. fill thh ,OS on left Logical: x>>2 | 00101000
Arithmetic shift
Arithmetic: x >> 2] 11101000

in C: meaning of >> on signed types is compiler-defined! GCC: arithmetic shift

in Java: >> is arithmetic, >>> is logical

Shift gotchas

For atype represented by n bits, shift by no more than n-1.

C: shift by <0 or >(bits in type) is undefined.
means anything could happen, including computer catching fire

Java: shift value is used modulo number of bits in shifted type
givenint x: x<<34==x<<2

9/8/15

WELLESLEY CS 240

Using Shifts and Masks

Extract 2™ most significant byte from a 32-bit integer:

X |01100001 1100010 p1100011 01100100

Extract the sign bit of asigned integer:

Shifting and Arithmetic: unsigned

e 00011011
Y =X <2 /////// logical shift left
y=108 01101100 shiftin zeros from the right
unsigned
11101101 c=237
e oo, T

35

Shifting and Arithmetic: signed

- 10011011
yEx<<2; M/// logical shift left:
y=108 01101100 shiftin zeros from the right
Forx >0: signed
11101101 =19
I DO

For x <0 it rounds the opposite direction!

36

Multiplication

Operands: w bits U [TTT s T11

* vV [ITT e« TTIT

True Product: 2*w bits u-v T T T e TTTT T T T s TT1

Discard w bits: w bits LIT] ee- 11

unsigned: u * v=(u-v) mod 2%
overflow iff any bit by>-w /=0

signed: overflow iff any bit by - w /= bu-1

Most programming

languages

More generally true about loss of value when casting to smaller types.
High bits are just discarded.

9/8/15

WELLESLEY CS 240

Power-of-2 Multiply with Shift

Signed vs. Unsigned in C

Constants
By default are considered to be signed integers

Use “U” suffix to force unsigned:
0U, 42949672590

60

Operation
u<<k = u* 2k
Both signed and unsigned k
u
CIITT - TTT1
Operands: w bits .
* 2 ooe oo
True Product: w+k bits w2 [TTT _see _TTTI0[*** 0[]0
Discard k bits: w bits UMult,(u , 2) [eee eoe
TMult,,(u , 2)
Examples
u<<3 == u * 8
(U << 5) - (u<< 3) == u * 24
29
Signed vs. Unsigned in C 1l

Casting: bits unchanged, just interpreted differently.

int tx, ty;
unsigned ux, uy;

Explicit casting:
tx = (int) ux;
uy = (unsigned) ty;

Implicit casting via assignments and function calls:
tx = ux;

uy = ty;

gcc flag -Wsign-conversion warns about implicit casts;-Wall does not!

61

C Casting Surprises R
Expression Evaluation

If you mix unsigned and signed in a single expression, then
signed values are implicitly cast to unsigned.

Including comparison operations <, >, ==,<=,>=

Examples for W=32: TMIN = -2,147,483,648 TMAX = 2,147,483,647

Constant; Constant; Relation Evaluation
0 ou == unsigned
-1 0 < signed
-1 ou > unsigned
2147483647 -2147483648 > signed
2147483647V -2147483648 < unsigned
-1 -2 > signed
(unsigned)-1 -2 > unsigned
2147483647 2147483648U < unsigned
2147483647 (int) 2147483648U > signed

02

9/8/15

