Linking and Loading

When your program is more thana single .asm file...

Linker: links separate object codes into one.

Object file header describes size and
pieces of file.

Text segment contains machine code.
Static data contains long lived data.

Relocation information identifies
instructions and data thatdepend on
absolute addresses.

Symbol table contains remaining labels
such as external references.

Debugging information concerning how
modules were compiled.

| assembly code I
library object code

Y

executable

1. Assign all text and data sections

symbolic spotsinaddress space.
2. Resolve symbolic labels to addresses.
3. Patch up absolute address references.

Linking schematic
Object file
main:
Linker
call ????
C library
object code
printf:
call, printf .

Relocation info

Executable file

main:

call printf

printf:

Loader: loads executable into memory.

1. Determine size of text and data segments.
> Create address space large enough for both.

5. Copy instructions and d
4. Copy parameters to mai

assembly code

ey
[object code] [library routines]
< I 4

loader

ata into memory. memory
n program onto stack.

s, Initialize registers (including $sp).
6. Jump to main procedure.

12/9/15

Static vs. dynamic linking

Update flexibility:
Getting library updates requires relinking.

: Library updates require no changes to executable.*

Code size:

all code and static data that might ever be called or used
* must be included in the executable.
* must be loaded at run-time.
: external codeis linked and loaded only if used.
* may save static and dynamic work
* moves some static work to run-time.

*assuming the APl does notchange.

Dynamic linking (see board...)

12/9/15

