Processes

Focus:
Process model

Process management case study: Unix/Linux/Mac OS X
(Windows is a little different.)

fork

pid_t fork()
1. Clone current parent process to create identical child process,
including all state (memory, registers, program counter,...).
2. Continue executing both copies with one difference:
returns 0 to the child process
returns child’s process ID (pid) to the parent process

pid _t pid = fork();

if (pid == 0) {
printf ("hello from child\n") ;
} else {

printf ("hello from parent\n");
}

fork is unique: called in one process, returns in two processes!

(once in parent, once in child)

fork example

Process n

» pid_t pid = fork();
if (pid == 0) {
printf ("hello from child\n");

1 } else {

printf ("hello from parent\n");

} Child Process m
pid t pid = fork(); 9 m pid t pid = fork(); 9 0
if (pid == 0) { if (pid == 0) {
printf ("hello from child\n"); printf ("hello from child\n");
2 } else { } else {

printf ("hello from parent\n");

printf ("hello from parent\n");
} }

pid_t pid = fork(); pid t pid = fork();
3 if (pid == 0) { if (pid == 0) {

printf ("hello from child\n"); » printf ("hello from child\n");
} else { } else {

. printf ("hello from parent\n");

printf ("hello from parent\n");
} }

hello from parent Which prints first? hello from child

4

fork again

Parent and child continue from private copies of same state.
Memory contents (code, globals, heap, stack, etc.),
Register contents, program counter, file descriptors...

Only difference: return value from fork ()
Relative execution order of parent/child after fork () undefined

void forkl() {
int x =1;
pid_t pid = fork() ;
if (pid == 0) {
printf("Child has x = %d\n", +x);
} else {
printf("Parent has x = %d\n", --x);
}

printf ("Bye from process %d with x = %d\n", getpid(), x);

11/12/15

fork-exec

fork-exec model:
fork() clone current process

execv () replace process code and context (registers, memory)
with a fresh program.

See man 3 execv, man 2 execve

// Example arguments: path="/usr/bin/ls”,
// argv[0]="/usr/bin/ls”, argv[l]="-ahl", argv[2]=NULL
void fork exec(char* path, char* argv[]) {
pid t pid = fork();
if (pid !'= 0) {
printf ("Parent: created a child %d\n”, pid);
} else {
printf ("Child: exec-ing new program now\n") ;
execv(path, argv);
}
printf("This line printed by parent only!\n");

When you run the command 1s

Exec-ing a new program inashell:

1 / Code/state of shell process.

Copy of code/state
of shell process.
]

fork(): \
parent child

Replaced by code/state of Is.

Stack
Stack
Z exec (): 3
B —
Heap
Data Data
Code: /usr/bin/bash| Code: /usr/bin/ls

Code/state of shell process.

execv: load/start program
Stack bottom
int execv(char* filename,

char* argv[]) Nul-terminated
argument strings

loads/starts program in current process:
Executable £ilename

unused

With argument list argv
overwrites code, data, and stack

Keeps pid, open files, a few other items Eraviargc) = NULL|'
does not return argv[arge-1]
unless error
argv[0]
Linker vars
envp
argv
Also sets up environment. Seealso: execve. argc
Stack frame for
main Stack top

exit: enda process

void exit(int status)
End process with status: 0 = normal, nonzero= error.
atexit () registers functions to be executed upon exit

11/12/15

Zombies!

Terminated process still consumes system resources
Various tables maintained by OS

A living corpse, half alive and half dead
Reaping with wait/waitpid
Parent waits to reap child once child terminates
Parent receives child exit status.
Kernel discards process.
What if parent doesn’t reap?

If any parent terminateswithout reaping a child, then child will be reaped
by init process (pid == 1)

But in long-running processes we need explicit reaping
e.g., shells and servers

10

wait forchild processesto terminate

pid t waitpid(pid_t pid, int* stat, int ops)

Suspend current process (i.e. parent) until child with pid ends.

On success:

Return pid when child terminates.
Reap child.

If stat != NULL, waitpid saves termination reason
where it points.

See also: man 3 waitpid

11

waitpid example HCBye..

CTBye

void fork_wait() {
int child_status;
pid_t child pid = fork();

if (child pid == 0) {
printf("HC: hello fram child\n") ;
} else {
if (-1 == waitpid(child pid, &child status, 0) {
perror ("waitpid") ;

exit(l);
}
printf("CT: child %d has terminated\n”,
child pid);

}
printf ("Bye\n") ;
exit (0) ;

Error-checking

Check return results of system calls for errors! (No exceptions.)
Read documentation for return values.

Use perror to report error, then exit.

void perror (char* message)

Print "message: reason that last system call failed."

11/12/15

Examining Processes on Linux (demo)

ps
pstree
top
/proc

14

Summary

Processes
System has multiple active processes

Each process appears to have total control of the processor.
OS periodically “context switches” between active processes
Implemented using exceptional control flow

Process management
fork, execv, waitpid

10

11/12/15

