CS240 Laboratory 2 Digital Logic

- Circuit equivalence
- Boolean Algebra/Universal gates
- Exclusive OR
- Binary Numbers
- Integrated circuits
- Logic Diagrams vs. pin-outs
- LogicWorks demo

Circuit Equivalence

Two boolean functions with same truth table = **equivalent**

When there is an equivalent circuit which uses fewer gates, transistors, or chips, it is preferable to use that circuit in the design

Example:						
Given: $F = A'B' + A'B$		$\mathbf{Q} = \mathbf{A'} + \mathbf{A'B} + \mathbf{A'B'}$				
A B A'B' A'B	<u> </u>	<u>A</u> B	A'	A'B	A' B'	Q
0 0 1 0	1	0 0	1	0	1	1
0 1 0 1	1	0 1	1	0	0	1
10000	0	1 0	0	0	0	0
1 1 0 0	0	1 1	0	0	0	0

F and Q are equivalent because they have the same truth table.

Identities of Boolean Algebra

-	Identity law	1A = A 0 + A = A
-	Null law	0A = 0 $1 + A = 1$
-	Idempotent law	AA = A A + A = A
-	Inverse law	AA' = 0 A + A' = 1
-	Commutative law	AB = BA $A + B = B + A$
-	Associative law	(AB)C = A(BC) $(A + B) + C = A + (B + C)$
-	Distributive law	A + BC = (A + B)(A + C) $A(B + C) = AB + AC$
-	Absorption law	A(A + B) = A $A + AB = A$
-	De Morgan's law	(AB)' = A' + B' (A + B)' = A'B'

Example:

F = A'B' + A'B = A'(B' + B) distributive = A'(1) inverse = A' identity Q = A' + A'B + A'B' = A' + A'B' absorption = A' absorption

Universal Gates

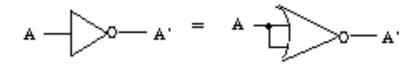
Any Boolean function can be constructed with NOT, AND, and OR gates

NAND and NOR = **universal gates**

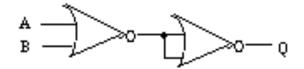
DeMorgan's Law shows how to make AND from NOR (and vice-versa)

AB = (A' + B')' (AND from NOR) A + B = (A'B')' (OR from NAND) $A = \bigcirc F = A = \bigcirc F = F$ $A = \bigcirc F = A = O$

NOT from a NOR



OR from a NOR



To implement a function using only NOR gates:

- apply DeMorgan's Law to each AND in the expression until all ANDs are converted to NORs
- use a NOR gate for any NOT gates, as well.
- remove any redundant gates (NOT NOT, may remove both)

Implementing the circuit using only NAND gates is similar.

Example: Q = (AB)'B'= (A' + B')B'= ((A'+B')' + B)' (NOR gates only, since NOR can be used as a NOT gate)

Simplifying Circuits or Proving Equivalency

General rule to simplify circuits or prove equivalency:

- 1. Distribute if possible, and if you can't, apply DeMorgan's Law so that you can.
- 2. Apply other identities to remove terms, and repeat step 1.

EXAMPLE: Is (A'B)'(AB)' + A'B' equivalent to (AB)'?

$$F = (A'B)'(AB)' + A'B' -- ca$$

= (A + B') (A' + B') + A'B' DeM
= AA' + AB' + A'B + B'B' + A'B' distr
= 0 + AB' + A'B + B' + A'B' inver
= AB' + A'B + A'B' ident
= B' (A+ A') + A'B distr
= B' (A+ A') + A'B ident
= B' + (A + B')' DeM
= (B(A + B'))' DeM
= (AB + BB')' distr
= (AB + 1)' inver
= (AB)' ident

-- can't distribute DeMorgan's distributive inverse and idempotent identity distributive inverse identity DeMorgan's DeMorgan's distributive inverse identity

Exclusive OR (XOR)

 $\mathbf{F} = \mathbf{A}\mathbf{B'} + \mathbf{A'}\mathbf{B} = \mathbf{A} \oplus \mathbf{B}$

ABF

 $\begin{array}{cccc} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}$

Available on IC as a gate, useful for comparison problems

 \supset

Example: Even parity $F = A \oplus B \oplus C$

Binary Numbers

Hex	Binary				
0	0	0	0	0	
1	0	0	0	1	
2	0	0	1	0	
3	0	0	1	1	
4	0	1	0	0	
1 2 3 4 5 6 7 8 9	0	1	0	1	
6	0	1	1	0	
7	0	1	1	1	
8	1	0	0	0	
9	1	0	0	1	
А	1	0	1	0	
В	1	0	1	1	
С	1	1	0	0	
C D	1	1	0	1	
E	1	1	1	0	
F	1	1	1	1	

Binary can be converted to decimal using positional representation of powers of 2:

$$0111_2 = 0 \ge 2^3 + 1 \ge 2^2 + 1 \ge 2^1 + 1 \ge 2^0$$
, result = 7₁₀

Decimal can be also be converted to binary by finding the largest power of 2 which fits, subtract, and repeat with the remainders until remainder is 0 (assigning 1 to the positions where a power of 2 is used):

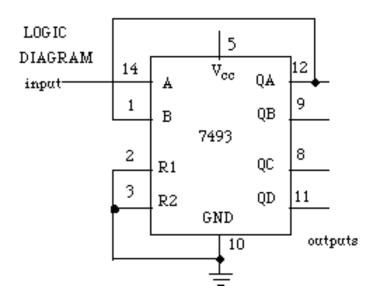
$$6_{10} = 6 - 2^2 = 2 - 2^1 = 0$$
, result = 0110₂

Hex can be converted to binary and vice versa by grouping into 4 bits.

 $11110101_2 = F5_{16} \qquad \qquad 37_{16} = 001101111$

Logic diagrams vs. pin-outs

Logic diagrams are not the same as pin-outs! Logic diagrams show information about the logical operation of the device.



Pin-outs (found in **TTL Data Book** or online) show the physical layout of the pins:

Top left pin is			Botte
pin 1, always to			almo
left of notch in			conn
chip, and often			(0V)
marked with a dot			
	1 🗗	14	
Pins are	2 d	13	Тор
numbered,	3 [12	alwa
starting with "1"	4 d	111	Vcc
at the top left	5 C	10	
corner and	6 C	19	
incremented	7 d	<u>þ</u> 8	
counter-			The c
clockwise around			if it i
the device			powe

Bottom left pin is almost always connected to ground (0V)

Top right pin is almost always connected to Vcc (+5V)

The chip will not work if it is not connected to power and ground!

Circuit Simulation/LogicWorks (demo)

