
CS 240 Lab 3
Basic Digital Circuits

• Review of Two’s Complement and Overflow

• Multiplexer

• Decoder

• Adder

• Arithmetic Logic Unit (ALU)

Two’s Complement and Overflow

Given n bits, the range of binary values which can be represented using

 Unsigned representation: 0 –> 2 n – 1

 Signed representation: – 2n-1 -> 2 n-1 – 1 because one bit is used for sign

Two’s Complement (signed representation):
 Most significant /leftmost bit (0/positive,1/negative)

 Example: given a fixed number of 4 bits:
 10002 is negative.
 01112 is positive.

Overflow
Given a fixed number of n available bits:
 Overflow occurs if a value cannot fit in n bits.

 Example: given 4 bits:
 The largest negative value we can represent is -810 (10002).
 The largest positive value we can represent is +710 (01112).

Overflow in Addition
When adding two numbers with the same sign which each can be represented
with n bits, the result may cause an overflow (not fit in n bits).

An overflow occurs when adding if:
 Two positive numbers added together yield a negative result, or
 Two negative numbers added together yield a positive result, or
 The carry-in and carry-out bits to the most significant pair of bits being
 added are not the same.

An overflow cannot result if a positive and negative number are added.

 Example: given 4 bits:
 0111
 + 0001
 1000 overflow NOTE: there is not a carry-out!

In two’s complement representation, a carry-out does not indicate an
overflow, as it does in unsigned representation.

 Example: given 4 bits,
 1001 (-7)
 + 1111 (-1)
 1 1000 (-8) no overflow, even though there is a carry-out

Multiplexer
Uses n select lines to choose one of the possible 2n inputs to pass through to
the output. Usually used for selection, but can also act as code detectors.

 8x1 MUX 2x1 MUX

Q = S2’S1’S0’D0 + C = S’A + SB
 S2’S1’S0D1 +
 S2’S1S0’D2 +
 S2’S1S0D3 +
 S2S1’S0’D4 +
 S2S1’S0D5 +
 S2S1S0’D6 +
 S2S1S0D7

S2 S1 S0 Q
0 0 0 D0
0 0 1 D1
0 1 0 D2
0 1 1 D3
1 0 0 D4
1 0 1 D5
1 1 0 D6
1 1 1 D7

Decoder
Takes an n-digit binary number input and identifies one of 2n output data lines
to activate.

 Q7

 Q0

 ...
 S2
 S1
 S0

S2 S1 S0 | Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7
0 0 0 | 1 0 0 0 0 0 0 0
0 0 1 | 0 1 0 0 0 0 0 0
0 1 0 | 0 0 1 0 0 0 0 0
0 1 1 | 0 0 0 1 0 0 0 0
1 0 0 | 0 0 0 0 1 0 0 0
1 0 1 | 0 0 0 0 0 1 0 0
1 1 0 | 0 0 0 0 0 0 1 0
1 1 1 | 0 0 0 0 0 0 0 1

Half-Adder – adds two one-bit values

A B Cout Sum
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Full Adder – incorporates a carry-in

Cin A B Cout Sum

0 0 0 0 0 Sum = A⊕B⊕Cin
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1 Cout = AB+(A⊕B)Cin
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

n-bit adder = n 1-bit adders

Carry-out of each adder = Carry-in for next two
 most significant bits being added

Carry-in to least significant adder is normally = 0

ALU

Want to be able to select whether the ALU will produce the bitwise AND, OR,
and sum as a result.

The basic operations and results are:

 add (a + b + Cin),

 AND (a AND b),

 OR (a OR b),

Adding the ability to choose whether to invert A or B provides additional
operations:

 sub (invert b, Cin = 1, a + b + Cin)

 NOR (invert a, invert b, a AND b)

invA invB Cin Op1 Op0 Result
0 0 X 0 0 a AND b
0 0 X 0 1 a OR b
0 0 0/1 1 0 a + b
0 1 1 1 0 a – b
1 1 X 0 0 a NOR b

