CS 240 Lab 3 Basic Digital Circuits

- Review of Two's Complement and Overflow
- Multiplexer
- Decoder
- Adder
- Arithmetic Logic Unit (ALU)

Two's Complement and Overflow

Given n bits, the range of binary values which can be represented using

Unsigned representation: $0 \rightarrow 2^{n} - 1$

Signed representation: $-2^{n-1} -> 2^{n-1} -1$ because one bit is used for sign

Two's Complement (signed representation):

Most significant /leftmost bit (0/positive, 1/negative)

Example: given a fixed number of 4 bits:

10002 is negative.

01112 is positive.

Overflow

Given a fixed number of n available bits:

Overflow occurs if a value cannot fit in n bits.

Example: given 4 bits:

The largest negative value we can represent is $-8_{10}(1000_2)$.

The largest positive value we can represent is $+7_{10}$ (0111₂).

Overflow in Addition

When adding two numbers with the same sign which each can be represented with n bits, the result may cause an overflow (not fit in n bits).

An overflow occurs when adding if:

Two positive numbers added together yield a negative result, or Two negative numbers added together yield a positive result, or The carry-in and carry-out bits to the most significant pair of bits being added are not the same.

An overflow cannot result if a positive and negative number are added.

```
Example: given 4 bits:

0111

+ 0001

1000 overflow NOTE: there is not a carry-out!
```

In two's complement representation, a carry-out does not indicate an overflow, as it does in unsigned representation.

```
Example: given 4 bits,

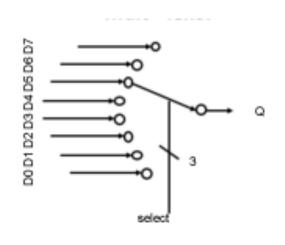
1001 (-7)

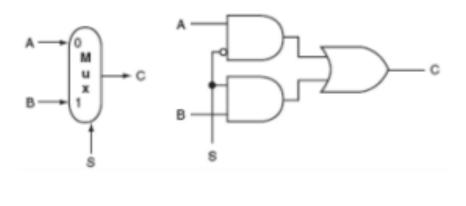
+ 1111 (-1)

1 1000 (-8) no overflow, even though there is a carry-out
```

Multiplexer

Uses n select lines to choose one of the possible 2ⁿ inputs to pass through to the output. Usually used for selection, but can also act as code detectors.





8x1 MUX

Q = S2'S1'S0'D0 +

S2S1'S0'D4 +

S2S1'S0D5 +

S2S1S0'D6 +

S2S1S0D7

S2'S1'S0D1 +

S2'S1S0'D2 +

S2'S1S0D3 +

S2 S1 S0 Q

0 0 0 D0

0 0 1 D1

0 1 0 D2

0 1 1 D3

100 D4

D5 1 0 1

1 10 D6

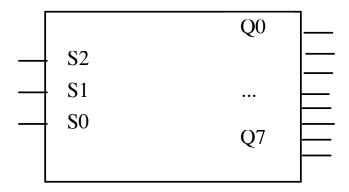
1 1 1 D7

2x1 MUX

C = S'A + SB

Decoder

Takes an n-digit binary number input and identifies one of 2ⁿ output data lines to activate.



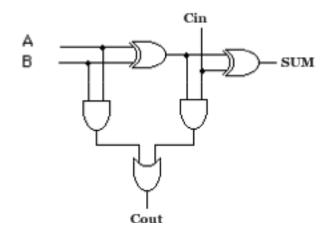
<u>S2</u>	S1	S0		Q0	Q1	Q2	Q3	Q4	Q5	Q6	Q7
0	0	0	1	1	0	0	0	0	0	0	0
0	0	1	I	0	1	0	0	0	0	0	0
0	1	0	I	0	0	1	0	0	0	0	0
0	1	1		0	0	0	1	0	0	0	0
1	0	0	- [0	0	0	0	1	0	0	0
1	0	1		0	0	0	0	0	1	0	0
1	1	0		0	0	0	0	0	0	1	0
1	1	1	-	0	0	0	0	0	0	0	1

Half-Adder — adds two one-bit values

A B	SUM
	Cont

A	В	Cout	Sum
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Full Adder — incorporates a carry-in

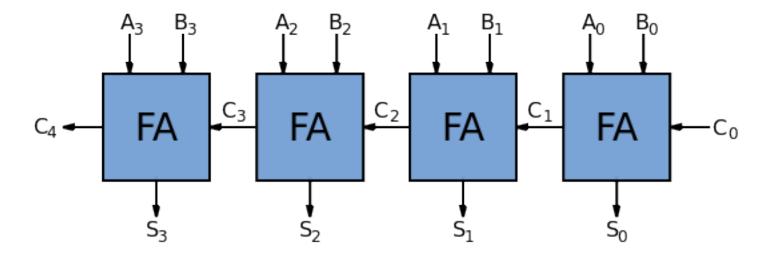


Cin	A	В	Cout	Sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

n-bit adder = n 1-bit adders

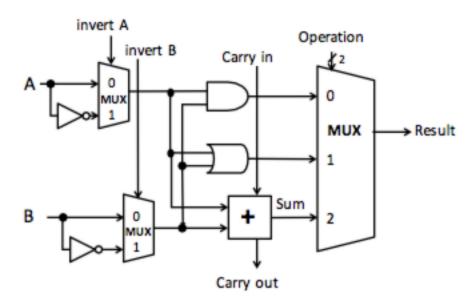
Carry-out of each adder = Carry-in for next two
most significant bits being added

Carry-in to least significant adder is normally = 0



ALU

Want to be able to select whether the ALU will produce the bitwise AND, OR, and sum as a result.



The basic operations and results are:

$$add (a + b + Cin),$$

AND (a AND b),

OR (a OR b),

Adding the ability to choose whether to invert A or B provides additional operations:

sub (invert b,
$$Cin = 1$$
, $a + b + Cin$)

NOR (invert a, invert b, a AND b)

inv	A invB	Cin	Op	1 Op0	Result
0	0	X	0	0	a AND b
0	0	X	0	1	a OR b
0	0	0/1	1	0	a + b
0	1	1	1	0	a - b
1	1	X	0	0	a NOR b