
CS 240 Lab 3 
Basic Digital Circuits 

 
• Review of Two’s Complement and Overflow 
 
• Multiplexer 

 
• Decoder 

 
• Adder 

 
• Arithmetic Logic Unit (ALU) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Two’s Complement and Overflow 
 
Given n bits, the range of binary values which can be represented using 
  
 Unsigned representation: 0 –> 2 n  – 1 
  
 Signed representation: – 2n-1 -> 2 n-1 – 1   because one bit is used for sign 
 
 
 
Two’s Complement (signed representation): 
 Most significant /leftmost bit (0/positive,1/negative) 
 
 Example: given a fixed number of 4 bits: 
  10002 is negative. 
  01112 is positive. 
 
Overflow 
Given a fixed number of n available bits: 
  Overflow occurs if a value cannot fit in n bits. 
 
 Example: given 4 bits: 
  The largest negative value we can represent is -810 (10002). 
  The largest positive value we can represent is +710 (01112). 
 
 
 
 
Overflow in Addition 
When adding two numbers with the same sign which each can be represented 
with n bits, the result may cause an overflow (not fit in n bits). 



 
An overflow occurs when adding if: 
 Two positive numbers added together yield a negative result, or 
 Two negative numbers added together yield a positive result, or 
 The carry-in and carry-out bits to the most significant pair of bits being  
 added are not the same. 
 
An overflow cannot result if a positive and negative number are added. 
 
 Example: given 4 bits: 
  0111 
      + 0001 
  1000      overflow          NOTE: there is not a carry-out! 
 
In two’s complement representation, a carry-out does not indicate an 
overflow, as it does in unsigned representation. 
 
 Example: given 4 bits, 
  1001 (-7) 
      + 1111 (-1) 
      1 1000 (-8)    no overflow, even though there is a carry-out 
 
 
 
 
  



Multiplexer 
Uses n select lines to choose one of  the possible 2n  inputs to pass through to 
the output. Usually used for selection, but can also act as code detectors. 
 
 

 
 

            8x1 MUX                                 2x1 MUX     
 
Q =   S2’S1’S0’D0 +      C = S’A + SB 
 S2’S1’S0D1  + 
         S2’S1S0’D2  + 
 S2’S1S0D3   + 
 S2S1’S0’D4  + 
 S2S1’S0D5   + 
         S2S1S0’D6   + 
 S2S1S0D7    
 
S2 S1 S0    Q                    
0  0 0    D0        
0  0 1    D1        
0  1 0    D2        
0  1 1    D3        
1 0 0     D4        
1  0 1    D5        
1  1 0    D6        
1  1 1    D7        



Decoder 
Takes an n-digit binary number input and identifies one of 2n  output data lines 
to activate.  
 
 

 Q7 

 Q0 

 ... 
 S2 
 S1 
 S0 

 
S2  S1 S0    |   Q0  Q1 Q2  Q3  Q4  Q5  Q6   Q7 
0   0   0    |    1    0   0   0    0    0     0    0 
0   0   1    |    0    1   0   0    0    0    0    0  
0   1   0    |    0    0   1   0    0    0    0    0  
0   1   1    |    0    0   0   1    0    0    0    0  
1   0   0    |    0    0   0   0    1    0    0    0  
1   0   1    |    0    0   0   0    0    1    0    0  
1   1   0    |    0    0   0   0    0    0    1    0  
1   1   1    |    0    0   0   0    0    0    0    1  
 
 



Half-Adder – adds two one-bit values 

 

A   B    Cout  Sum 
0   0    0     0       
0   1    0     1    
1   0    0     1     
1   1    1     0    
 

  
 

Full Adder – incorporates a carry-in 

 

Cin A  B    Cout   Sum 

0   0    0      0     0  Sum = A⊕B⊕Cin 
0   0    1      0     1 
0   1    0      0     1 
0   1    1      1     0 
1   0    0      0     1     Cout = AB+(A⊕B)Cin 
1   0    1      1     0 
1   1    0      1     0 
1   1    1      1     1 
 
 



n-bit adder = n 1-bit adders  
 
Carry-out of each adder = Carry-in for next two     
               most significant bits being added 
 
Carry-in to least significant adder is normally = 0 
 

  



 
  



ALU 
 
Want to be able to select whether the ALU will produce the bitwise AND, OR, 
and sum as a result. 
 
 

 
The basic operations and results are: 
 
 add (a + b + Cin),   

 AND  (a AND b),    

 OR (a OR b),   
 
Adding the ability to choose whether to invert A or B provides additional 
operations: 
 
 sub (invert b, Cin = 1, a + b + Cin) 

 NOR (invert a, invert b, a AND b) 
 

 



invA invB   Cin Op1  Op0     Result        
0 0    X     0 0   a AND b  
0 0    X     0 1   a OR b        
0 0    0/1   1 0   a + b   
0 1    1     1 0   a – b            
1 1    X     0 0   a NOR b      
 
 


