
Laboratory 5
Processor Datapath

Description of HW Instruction Set Architecture

• 16 bit data bus

• 8 bit address bus

• Starting address of every program = 0 (PC initialized to 0 by a reset

to begin execution)

• PC incremented by 2 to move to the next instruction.

• 16 registers

R0 = 0 (constant)
R1 =1 (constant)
R2-R15 general purpose

Instruction Set
Instruction Meaning Op Rs Rt Rd
 4-bit 4-bit 4-bit 4-bit
LW Rs,Rt,offset Rt loaded with word from

 Data Memory at
 address(Rs + offset)

 0000 0-15 0-15 offset

SW Rs,Rt,offset Data Memory

 address(Rs + offset)
 stored with word from
 Rt

 0001 0-15 0-15 offset

ADD Rs,Rt,Rd Rd := Rs + Rt 0010 0-15 0-15 0-15
SUB Rs,Rt,Rd Rd := Rs - Rt 0011 0-15 0-15 0-15
AND Rs,Rt,Rd Rd := Rs AND Rt 0100 0-15 0-15 0-15
OR Rs,Rt,Rd Rd := Rs OR Rt 0101 0-15 0-15 0-15

BEQ Rs,Rt,offset If Rs=Rt then
 pc:=pc+2+(offset*2) 0111 0-15 0-15 offset
 else
 pc:=pc+2

JMP offset Jump to abs. addr =
 offset*2 1000 ---12 bit offset-----

Instruction Fetch

Branch Address

Either PC + 2 or PC + 2 + (2*offset) is the next value of the PC.

On a BEQ instruction, BEQ Rs,Rt,offset

• The offset = number of instructions away from the next value of the PC to branch
to, so must be multiplied by 2.

• Since offset is 4 bits, it must be sign-extended to 8 bits to be added to the PC.

A 2x8 multiplexer circuit to selects the next value of the PC. The value of the Branch and
Zero bits are used to determine which is used:

• The Branch control line = 1 if a BEQ instruction is being executed.

• The Zero bit from the ALU is used to check whether Rs = Rt: it is 1 if Rs – Rt =
0 (meaning they’re equal). If Branch = 1 and Zero = 1, then the next value of the
PC will be the branch address ; otherwise, it will simply be PC + 2:

Register File and ALU

R-type instructions ADD,SUB,AND,OR,SLT (opcode Rs Rt Rd)

– read Rs and Rt from register file
– perform an ALU operation on the contents of the registers
– write the result to register Rd in register file

Memory Access instructions LW,SW (opcode Rs Rt offset)

– memory address = Rs + sign-extended 4-bit offset
– if SW, the value to be stored to memory is from Rt.
– if LW, Rt is loaded with the value read from memory

Register written to (Write Register) is Rd or Rt if a LW instruction (chosen by
a 2x4 MUX which is controlled by RegDst)

ALU calculates Rs + Rt, or Rs + sign-extended offset.

 - Input A of the ALU is always Rs

 - Input B of the ALU is Rt or the offset (chosen by a 2x16 multiplexer,
 which is controlled by ALUSrc):

Data Memory
We need an additional memory for values loaded or stored (LW or SW) during execution of
the program (the instruction memory is only used to store program instructions).

RegDst (chooses whether Rd or Rt goes to the Write data input on the Regfile)
 If 0, destination is Rd. If 1, destination is Rt.
RegWr (control line to RegFile)
 If 1, writes the value on the Write data input to the register specified by Write register
ALUSrc (chooses the source of the second ALU operand)
 If 0, the operand is the second register file output.
 If 1, the operand is the sign-extended, lowest 4 bits of the instruction.
MemRd (control signal to data memory)
 If 0, value stored at address in data memory is read from Read data.
MemWr (control signal to data memory)
 If 0, data memory address written with value from Rt on the Write data input.
MemtoReg (chooses the value to be written back to the Regfile)
 If 0, the value comes from the ALU (R-type instruction)
 If 1, the value comes from data memory (LW

ALUop(4 bits) ALU function
0 a AND b
1 a OR b
2 a + b (add)
6 a - b

 7 set on less than

ALU can perform 5 possible operations:

ALUop ALU function
0 a AND b
1 a OR b
2 a + b (add)
6 a - b
7 set on less than

Need an ALU Control Unit to select the proper operation for each instruction:

Instruction Opcode ALU operation ALUop
LW 0 add 2
SW 1 add 2
ADD 2 add 2
SUB 3 sub 6
AND 4 and 0
OR 5 or 1
SLT 6 slt 7
BEQ 7 sub 6
JMP 8 don’t care don’t care

Op3 Op2 Op1 Op0 ALUop3 ALUop2 ALUop1 ALUop0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 1 0
0 0 1 0 0 0 1 0
0 0 1 1 0 1 1 0
0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 1
0 1 1 0 0 1 1 1
0 1 1 1 0 1 1 0

Can use a 3x8 decoder to produce the ALUop

Control Unit

Must provide control signals for all other devices in datapath (MUXs, Regfile, Data Memory)

Instruction Opcode RegDst RegWr ALUSrc MemRd MemWr MemtoReg
LW 0000 1 1 1 0 1 1
SW 0001 1 0 1 1 0 0
ADD 0010 0 1 0 1 1 0
SUB 0011 0 1 0 1 1 0
AND 0100 0 1 0 1 1 0
OR 0101 0 1 0 1 1 0
SLT 0110 0 1 0 1 1 0
BEQ 0111 0 0 0 1 1 0
JMP 1000 0 0 0 1 1 0

Full Implementation

Procedure to Load/Execute a New Program

1. Disconnect the address bus of the Instruction Memory from the CPU
2. Set LOAD = 0

3. Set address and data switches for instruction
4. Set WR = 0, then back to 1
5. Repeat steps 3 and 4 until all instructions are loaded to memory

6. Set LOAD = 1
7. Reconnect address bus to CPU

8. Set Reset = 1, then back to 0
9. Set CLK = 1, then back to 0, for each instruction.

