Laboratory 5
 Processor Datapath

Description of HW Instruction Set Architecture

- 16 bit data bus
- 8 bit address bus
- Starting address of every program $=0$ (PC initialized to 0 by a reset to begin execution)
- PC incremented by 2 to move to the next instruction.
- 16 registers

R0 $=0$ (constant)
R1 =1 (constant)
R2-R15 general purpose

Instruction Set

Instruction	Meaning	Op 4-bit	Rs 4-bit	Rt 4-bit	Rd 4-bit
LW Rs,Rt,offset	Rt loaded with word from Data Memory at				
	address(Rs + offset)	0000	$0-15$	$0-15$	offset

SW Rs,Rt,offset	Data Memory address(Rs + offset) stored with word from Rt

$0001 \quad 0-15 \quad 0-15$ offset

| ADD Rs,Rt,Rd | $\mathrm{Rd}:=\mathrm{Rs}+\mathrm{Rt}$ | 0010 | $0-15$ | $0-15$ | $0-15$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| SUB Rs,Rt,Rd | $\mathrm{Rd}:=\mathrm{Rs}-\mathrm{Rt}$ | 0011 | $0-15$ | $0-15$ | $0-15$ |
| AND Rs,Rt,Rd | Rd $:=\mathrm{Rs}$ AND Rt | 0100 | $0-15$ | $0-15$ | $0-15$ |
| OR Rs,Rt,Rd | $\mathrm{Rd}:=\mathrm{Rs}$ OR Rt | 0101 | $0-15$ | $0-15$ | $0-15$ |

BEQ Rs,Rt,offset If Rs=Rt then
$\mathrm{pc}:=\mathrm{pc}+2+($ offset*2) $0111 \quad 0-15 \quad 0-15$ offset else
$\mathrm{pc}:=\mathrm{pc}+2$
JMP offset Jump to abs. addr $=$ offset*2

1000 ---12 bit offset-----

Instruction Fetch

Branch Address

Either $\mathbf{P C}+\mathbf{2}$ or $\mathbf{P C}+\mathbf{2 + (2 *} \mathbf{~} \mathbf{f f s e t})$ is the next value of the PC .

On a BEQ instruction, BEQ Rs,Rt,offset

- The offset = number of instructions away from the next value of the PC to branch to, so must be multiplied by 2 .
- Since offset is 4 bits, it must be sign-extended to 8 bits to be added to the PC.

A 2x8 multiplexer circuit to selects the next value of the PC. The value of the Branch and Zero bits are used to determine which is used:

- The Branch control line $=1$ if a BEQ instruction is being executed.
- The Zero bit from the ALU is used to check whether Rs = Rt: it is 1 if $\mathrm{Rs}-\mathrm{Rt}=$ 0 (meaning they're equal). If Branch $=1$ and $\mathbf{Z e r o}=1$, then the next value of the PC will be the branch address ; otherwise, it will simply be PC +2 :

R-type instructions ADD,SUB,AND,OR,SLT (opcode Rs Rt Rd)

- read Rs and Rt from register file
- perform an ALU operation on the contents of the registers
- write the result to register Rd in register file

Memory Access instructions LW,SW (opcode Rs Rt offset)

- memory address $=$ Rs + sign-extended 4-bit offset
- if SW, the value to be stored to memory is from Rt.
- if $\mathbf{L W}, \mathrm{Rt}$ is loaded with the value read from memory

Register written to (Write Register) is Rd or Rt if a $\mathbf{L W}$ instruction (chosen by a 2×4 MUX which is controlled by RegDst)

ALU calculates Rs + Rt, or Rs + sign-extended offset.

- Input A of the ALU is always Rs
- Input B of the ALU is Rt or the offset (chosen by a 2×16 multiplexer, which is controlled by ALUSrc):

Data Memory

We need an additional memory for values loaded or stored ($\mathbf{L W}$ or $\mathbf{S W}$) during execution of the program (the instruction memory is only used to store program instructions).

RegDst (chooses whether Rd or Rt goes to the Write data input on the Regfile)
If 0 , destination is Rd. If 1 , destination is Rt.
RegWr (control line to RegFile)
If 1 , writes the value on the Write data input to the register specified by Write register
ALUSre (chooses the source of the second ALU operand)
If 0 , the operand is the second register file output.
If 1 , the operand is the sign-extended, lowest 4 bits of the instruction.
MemRd (control signal to data memory)
If 0 , value stored at address in data memory is read from Read data.
MemWr (control signal to data memory)
If 0 , data memory address written with value from $\mathbf{R t}$ on the Write data input.
MemtoReg (chooses the value to be written back to the Regfile)
If 0, the value comes from the ALU (R-type instruction)
If 1 , the value comes from data memory (LW
ALUop(4 bits) ALU function

0
1
2
6
7
a AND b
a OR b
$\mathrm{a}+\mathrm{b}$ (add)
$\mathrm{a}-\mathrm{b}$
set on less than

ALU can perform 5 possible operations:

ALUop	ALU function
0	a AND b
1	a OR b
2	$\mathrm{a}+\mathrm{b}$ (add)
6	$\mathrm{a}-\mathrm{b}$
7	set on less than

Need an ALU Control Unit to select the proper operation for each instruction:
Instruction Opcode ALU operation ALUop

LW	0	add	2
SW	1	add	2
ADD	2	add	2
SUB	3	sub	6
AND	4	and	0
OR	5	or	1
SLT	6	slt	7
BEQ	7	sub	6
JMP	8	don't care	don't care

Op3 Op2 Op1 Op0 ALUop3 ALUop2 ALUop1 ALUop0

0	0	0	0	0	0	1	0
0	0	0	1	0	0	1	0
0	0	1	0	0	0	1	0
0	0	1	1	0	1	1	0
0	1	0	0	0	0	0	0
0	1	0	1	0	0	0	1
0	1	1	0	0	1	1	1
0	1	1	1	0	1	1	0

Can use a 3×8 decoder to produce the ALUop

Control Unit

Must provide control signals for all other devices in datapath (MUXs, Regfile, Data Memory)

Instruction								Opcode
InegDst	RegWr	ALUSrc	MemRd	MemWr	MemtoReg			
LW	0000	1	1	1	0	1	1	
SW	0001	1	0	1	1	0	0	
ADD	0010	0	1	0	1	1	0	
SUB	0011	0	1	0	1	1	0	
AND	0100	0	1	0	1	1	0	
OR	0101	0	1	0	1	1	0	
SLT	0110	0	1	0	1	1	0	
BEQ	0111	0	0	0	1	1	0	
JMP	1000	0	0	0	1	1	0	

Full Implementation

Procedure to Load/Execute a New Program

1. Disconnect the address bus of the Instruction Memory from the CPU
2. Set $\mathbf{L O A D}=0$
3. Set address and data switches for instruction
4. Set $\mathbf{W R}=0$, then back to 1
5. Repeat steps 3 and 4 until all instructions are loaded to memory
6. Set LOAD $=1$
7. Reconnect address bus to CPU
8. Set Reset $=1$, then back to 0
9. Set $\mathbf{C L K}=1$, then back to 0 , for each instruction.
