

Laboratory 9 Notes
X86 Stack

Stack Operations

 push src 1. Make space on the stack by decrementing %rsp (stack
 pointer).
 2. Move src to the stack

%rsp  %rsp - 8
(%rsp)  src

Initial state of the stack

%rsp=0xfffffffffff8

Push a word-size value in %rax on the stack
(decrement %rsp and move Src to (%rsp)

 (assume %rax = 0x0000000002030405)

Push %rax

%rsp=0x fffffffffff0

 0x02030405

 pop dest 1. Move contents of top of stack to the dest
 2. Release space on the stack by incrementing %rsp.

dest  (%rsp)
%rsp  %rsp + 8

Initial State of Stack

 $rsp=0x fffffffffff0

Pop a word-size value from the stack.

Pop %rbx

 (%rbx gets 0x0000000002030405)

$rsp=0x fffffffffff8

 0x02030405 0x02030405

 Instructions used for Function call and return

 call function 1. Pushes the return address on stack (the address of the
 instruction following the function call)
 2. Puts the starting address of the function in %rip:

%rsp  %rsp - 8
(%rsp)  %rip (already updated for next instruction)
%rip  address of function

 ret 1. Pops the return address off the top of the stack
 and puts it in %rip (resumes execution of the caller
 function.

 %rip  (%rsp)
 %rsp  %rsp + 8

Conventions for drawing stack diagrams

To record the contents of the stack to understand how the stack is used, using
the following notation:

- We use the model of memory where the stack has low addresses at the
bottom and high at the top. Each row in the stack represents a word. The
initial %rsp with a subscript of 0 is pointing to the top of the current
stack frame

Current Stack
frame
 %rsp0 ---- ret addr in calling program

- Trace the effect on the stack of executing each instruction in the program

by moving the position of the %rsp when it changes, (incrementing the
subscript for each new value), and by recording new values on the stack
as they are stored there.

- When the stack starts to empty, continue with the same notation, except

use the right hand side of the stack diagram to indicate the changes.

- Also record changes to relevant registers.

